שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.
»
«
מהי שרשרת מחשבה בלמידת מכונה?
דמיינו מודל AI שלא רק עונה לכם על השאלה ששאלתם אלא משתף אתכם בהסבר מפורט על סדר הפעולות שעשה בדרך לתשובה ובמהלך המחשבה שלו. נכון שזה מעולה? - זה מצוין כדי להבין, ללמוד, להשתפר וכמובן לאמת שהתשובה היא לא עוד הזיית AI, כמו שאנו מקבלים לעתים מהמודלים שלנו.
שרשרת מחשבה (Chain of thought ובקיצור COT) היא בדיוק שיטה כזו. טכניקה חדישה יחסית, שפותחה בתחום הבינה המלאכותית, לפיה הבינה מתבקשת לא רק לענות על שאלה, אלא להסביר ולשתף בכל שלב, בצעדים או בשלבים לקראת ועד הפיתרון. מכאן בא גם תרגום נוסף ואולי אף מדויק יותר בעברית של התהליך: "חשיבה מדורגת".
אם נדמיין לרגע שאנחנו מלמדים ילד לפתור בעיה מורכבת, סביר שלא נגיד לו את התשובה הסופית מיד. במקום זאת, נעדיף להוביל אותו אל הפתרון, בצעדים קטנים, צעד אחרי צעד. וזה בדיוק מה שקורה כשמתקשרים עם מודלים של בינה מלאכותית בדרך של שרשרת החשיבה, או החשיבה המדורגת.
באופן דומה, אפשר להנחות את הצ'טבוט כבר בפרומפט, לתת הסבר בשלבים של דרך הפתרון או ההגעה לתשובה ולא רק את התשובה עצמה.
#איך זה עובד בפועל?
זה לא מסובך. במקום לשאול "מה התשובה?", אפשר לכתוב למודל "בוא נחשוב על זה צעד אחרי צעד" או "הסבר לי את תהליך החשיבה שלך". התוצאה די מפתיעה: המודל הממושמע מתחיל לפרק את הבעיה לחלקים קטנים יותר, מסביר כל שלב בדרך ומוביל בהדרגה אל הפתרון המלא.
לטכניקה הזו יש משמעות מיוחדת בעולם הפרומפטים. כשאנחנו כותבים פרומפט חכם, אנחנו למעשה מזמינים את המודל לשתף אותנו בתהליך החשיבה שלו, בדיוק כמו תלמיד שמראה את כל שלבי הפתרון במחברת המתמטיקה. במקום לקבל תשובה יבשה וסופית, אנחנו מקבלים הצצה מרתקת אל תוך "המוח" של הבינה המלאכותית.
ושוב - לא מדובר רק על חקירת מידע, אלא על חקר הבינה האנושית עצמה. בדרך הזו אנו יכולים לחייב את הבינה להיות מאורגנת יותר ואולי אף ליפול פחות לאותן הזיות (Hallucinations), פריטי מידע שקריים או מטעים שלרוב מוצגים כעובדה.
#מה היתרון בשיטה הזו?
היתרון הגדול של שיטת "שרשרת המחשבה" הוא כפול: לא זו בלבד שהיא משפרת משמעותית את הדיוק של התשובות, אלא שהיא גם הופכת את כל התהליך לשקוף יותר. כשאנו, בני האדם, שותפים לתהליך המחשבה המודרגת הזו, ההרגשה היא כמו להציץ מעבר לכתפו של מומחה בזמן שהוא עובד - אנו לא רק רואים את התוצאה הסופית, אלא יכולים להבין בדיוק איך הגיעו אליה.
ובעידן שבו בינה מלאכותית הופכת לחלק בלתי נפרד מחיינו, היכולת להבין את תהליך החשיבה של מודל שפה או כל מכונה בינתית שהיא, היא לא רק יתרון, כי אחרי שמתנסים בה, מבינים כמה היא לעתים הכרחית.
הנה שרשרת מחשבה:
https://youtu.be/Fp-ue4UCE3s
הסבר יפה של ה-Chain of Thought:
https://youtu.be/4Iwnx2cVqtE
כך תשלטו בהנחיות שרשרת, באנגלית Chain prompting:
https://youtu.be/B4MR8m7V17A?long=yes
פודקסט AI על הסבר מפורט יותר על החשיבה המדורגת:
https://youtu.be/uo6y8oDrW3U?long=yes
והסבר מפורט יותר על זה:
https://youtu.be/C_gf9KNScIo?long=yes
מה בין מודל היגיון, מולטי מודאליות ושרשרת מחשבה?
בעולם המתהווה ממש לנגד עינינו יש לעתים בלבול בין טכנולוגיות, מושגים ורעיונות שונים. הבה נבהיר את ההבדלים ביניהם:
#מולטי מודאליות (Multimodal Model)
זוהי תכונה של מודל שפה שיכול לקבל סוגי קלט שונים ולהתייחס אליהם, במקום רק טקסט, כמו מודלי השפה הרגילים או הראשונים שהכרנו בהתחלה. הרעיון במודלים מולטי-מודאליים כאלו הוא שהם משלבים כמה סוגי נתונים או מודאלים, כולל טקסט, תמונות, הקלטות, אולי סרטונים וכדומה.
דוגמה לכך היא מודל ה-Multimodal Chain-of-Thought (בקיצור CoT), שמציע גישה בה המודל משתמש בשני שלבים: הראשון הוא יצירת רציונלים, הסברים, והשלב השני של הסקת תשובות. השילוב של מידע טקסטואלי עם מידע חזותי מאפשר למודלים אלו לשפר את ביצועיהם ולצמצם את כמות ה"הזיות" (hallucinations) בתשובותיהם. פירוט בתגית "מולטי מודאליות".
#מודל היגיון (Reasoning Model)
מודל היגיון הוא מודל שנועד לחקות את תהליך החשיבה האנושית. הוא מתמקד בהסקת מסקנות לוגיות על בסיס מידע נתון, ולא רק בהפקת תשובות מהירות.
מודלים אלו מבצעים לעיתים קרובות "שרשרת מחשבה" (Chain of Thought), כלומר הם חושבים צעד אחר צעד כדי לפתור בעיות מורכבות, כמו בעיות מתמטיות או מדעיות. זה מאפשר להם להסביר את הפתרונות שלהם בצורה ברורה ומדויקת יותר. פירוט בתגית "מודל היגיון".
#שרשרת מחשבה (Chain of Thought)
ה-Chain of Thought ובקיצור CoT, הוא טכניקת הפעלת מודלים שבה המודל מונחה לפרק בעיה סבוכה ומורכבת ולייצר רצף של צעדי חשיבה קטנים, לפני שהוא מספק תשובה.
שיטה זו, המחקה את דרך הפעולה האנושית, שיפרה את יכולות ההיגיון של מודלים גדולים והוכחה כיעילה בביצוע משימות שונות כמו חישובים, רציונליזציה של מצבים יומיומיים, ופתרון בעיות סימבוליות.
המודל מתבסס על דוגמאות קודמות כדי להנחות את החשיבה שלו, מה שמוביל לשיפור משמעותי בביצועים. פירוט בתגית "שרשרת מחשבה".
אז נסכם שמולטי מודאליטי או מולטי מודאליות משלבת סוגי נתונים או קלט שונים ולא רק טקסט ובכך משפרת ביצועים. מודל היגיון, בסמוך, מחקה את החשיבה האנושית ומספק הסברים לוגיים לתשובות שהוא נותן, בעוד שחשיבה מדורגת, או שרשרת מחשבה, היא טכניקה שמסייעת ומנחה מודלים לחשוב על בעיות בצורה מסודרת, לפני שהם נותנים את התשובה.
שלושת המושגים הללו קשורים זה בזה, כי מודלי ההיגיון יכולים להשתמש בטכניקות של חשיבה מודרגת (Chain of Thought) ולא פעם משולבים בהם אמצעים מולטי-מודאליים כדי לנצל את היתרונות של כל אחד מהם.
DeepSeek

דמיינו מודל AI שלא רק עונה לכם על השאלה ששאלתם אלא משתף אתכם בהסבר מפורט על סדר הפעולות שעשה בדרך לתשובה ובמהלך המחשבה שלו. נכון שזה מעולה? - זה מצוין כדי להבין, ללמוד, להשתפר וכמובן לאמת שהתשובה היא לא עוד הזיית AI, כמו שאנו מקבלים לעתים מהמודלים שלנו.
שרשרת מחשבה (Chain of thought ובקיצור COT) היא בדיוק שיטה כזו. טכניקה חדישה יחסית, שפותחה בתחום הבינה המלאכותית, לפיה הבינה מתבקשת לא רק לענות על שאלה, אלא להסביר ולשתף בכל שלב, בצעדים או בשלבים לקראת ועד הפיתרון. מכאן בא גם תרגום נוסף ואולי אף מדויק יותר בעברית של התהליך: "חשיבה מדורגת".
אם נדמיין לרגע שאנחנו מלמדים ילד לפתור בעיה מורכבת, סביר שלא נגיד לו את התשובה הסופית מיד. במקום זאת, נעדיף להוביל אותו אל הפתרון, בצעדים קטנים, צעד אחרי צעד. וזה בדיוק מה שקורה כשמתקשרים עם מודלים של בינה מלאכותית בדרך של שרשרת החשיבה, או החשיבה המדורגת.
באופן דומה, אפשר להנחות את הצ'טבוט כבר בפרומפט, לתת הסבר בשלבים של דרך הפתרון או ההגעה לתשובה ולא רק את התשובה עצמה.
#איך זה עובד בפועל?
זה לא מסובך. במקום לשאול "מה התשובה?", אפשר לכתוב למודל "בוא נחשוב על זה צעד אחרי צעד" או "הסבר לי את תהליך החשיבה שלך". התוצאה די מפתיעה: המודל הממושמע מתחיל לפרק את הבעיה לחלקים קטנים יותר, מסביר כל שלב בדרך ומוביל בהדרגה אל הפתרון המלא.
לטכניקה הזו יש משמעות מיוחדת בעולם הפרומפטים. כשאנחנו כותבים פרומפט חכם, אנחנו למעשה מזמינים את המודל לשתף אותנו בתהליך החשיבה שלו, בדיוק כמו תלמיד שמראה את כל שלבי הפתרון במחברת המתמטיקה. במקום לקבל תשובה יבשה וסופית, אנחנו מקבלים הצצה מרתקת אל תוך "המוח" של הבינה המלאכותית.
ושוב - לא מדובר רק על חקירת מידע, אלא על חקר הבינה האנושית עצמה. בדרך הזו אנו יכולים לחייב את הבינה להיות מאורגנת יותר ואולי אף ליפול פחות לאותן הזיות (Hallucinations), פריטי מידע שקריים או מטעים שלרוב מוצגים כעובדה.
#מה היתרון בשיטה הזו?
היתרון הגדול של שיטת "שרשרת המחשבה" הוא כפול: לא זו בלבד שהיא משפרת משמעותית את הדיוק של התשובות, אלא שהיא גם הופכת את כל התהליך לשקוף יותר. כשאנו, בני האדם, שותפים לתהליך המחשבה המודרגת הזו, ההרגשה היא כמו להציץ מעבר לכתפו של מומחה בזמן שהוא עובד - אנו לא רק רואים את התוצאה הסופית, אלא יכולים להבין בדיוק איך הגיעו אליה.
ובעידן שבו בינה מלאכותית הופכת לחלק בלתי נפרד מחיינו, היכולת להבין את תהליך החשיבה של מודל שפה או כל מכונה בינתית שהיא, היא לא רק יתרון, כי אחרי שמתנסים בה, מבינים כמה היא לעתים הכרחית.
הנה שרשרת מחשבה:
https://youtu.be/Fp-ue4UCE3s
הסבר יפה של ה-Chain of Thought:
https://youtu.be/4Iwnx2cVqtE
כך תשלטו בהנחיות שרשרת, באנגלית Chain prompting:
https://youtu.be/B4MR8m7V17A?long=yes
פודקסט AI על הסבר מפורט יותר על החשיבה המדורגת:
https://youtu.be/uo6y8oDrW3U?long=yes
והסבר מפורט יותר על זה:
https://youtu.be/C_gf9KNScIo?long=yes

בעולם המתהווה ממש לנגד עינינו יש לעתים בלבול בין טכנולוגיות, מושגים ורעיונות שונים. הבה נבהיר את ההבדלים ביניהם:
#מולטי מודאליות (Multimodal Model)
זוהי תכונה של מודל שפה שיכול לקבל סוגי קלט שונים ולהתייחס אליהם, במקום רק טקסט, כמו מודלי השפה הרגילים או הראשונים שהכרנו בהתחלה. הרעיון במודלים מולטי-מודאליים כאלו הוא שהם משלבים כמה סוגי נתונים או מודאלים, כולל טקסט, תמונות, הקלטות, אולי סרטונים וכדומה.
דוגמה לכך היא מודל ה-Multimodal Chain-of-Thought (בקיצור CoT), שמציע גישה בה המודל משתמש בשני שלבים: הראשון הוא יצירת רציונלים, הסברים, והשלב השני של הסקת תשובות. השילוב של מידע טקסטואלי עם מידע חזותי מאפשר למודלים אלו לשפר את ביצועיהם ולצמצם את כמות ה"הזיות" (hallucinations) בתשובותיהם. פירוט בתגית "מולטי מודאליות".
#מודל היגיון (Reasoning Model)
מודל היגיון הוא מודל שנועד לחקות את תהליך החשיבה האנושית. הוא מתמקד בהסקת מסקנות לוגיות על בסיס מידע נתון, ולא רק בהפקת תשובות מהירות.
מודלים אלו מבצעים לעיתים קרובות "שרשרת מחשבה" (Chain of Thought), כלומר הם חושבים צעד אחר צעד כדי לפתור בעיות מורכבות, כמו בעיות מתמטיות או מדעיות. זה מאפשר להם להסביר את הפתרונות שלהם בצורה ברורה ומדויקת יותר. פירוט בתגית "מודל היגיון".
#שרשרת מחשבה (Chain of Thought)
ה-Chain of Thought ובקיצור CoT, הוא טכניקת הפעלת מודלים שבה המודל מונחה לפרק בעיה סבוכה ומורכבת ולייצר רצף של צעדי חשיבה קטנים, לפני שהוא מספק תשובה.
שיטה זו, המחקה את דרך הפעולה האנושית, שיפרה את יכולות ההיגיון של מודלים גדולים והוכחה כיעילה בביצוע משימות שונות כמו חישובים, רציונליזציה של מצבים יומיומיים, ופתרון בעיות סימבוליות.
המודל מתבסס על דוגמאות קודמות כדי להנחות את החשיבה שלו, מה שמוביל לשיפור משמעותי בביצועים. פירוט בתגית "שרשרת מחשבה".
אז נסכם שמולטי מודאליטי או מולטי מודאליות משלבת סוגי נתונים או קלט שונים ולא רק טקסט ובכך משפרת ביצועים. מודל היגיון, בסמוך, מחקה את החשיבה האנושית ומספק הסברים לוגיים לתשובות שהוא נותן, בעוד שחשיבה מדורגת, או שרשרת מחשבה, היא טכניקה שמסייעת ומנחה מודלים לחשוב על בעיות בצורה מסודרת, לפני שהם נותנים את התשובה.
שלושת המושגים הללו קשורים זה בזה, כי מודלי ההיגיון יכולים להשתמש בטכניקות של חשיבה מודרגת (Chain of Thought) ולא פעם משולבים בהם אמצעים מולטי-מודאליים כדי לנצל את היתרונות של כל אחד מהם.
