שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.
»
«
איך מאמנים מכונות ובאילו שיטות הן לומדות?
למידת מכונה מתבססת על יצירה של מודל גדול. המודל עצמו הוא אכן אוסף גדול ומורכב של מספרים, שמייצגים מידע, כלומר דאטה שהוזן למודל מהעולם האמיתי כקלט (Input).
המספרים הללו מייצגים את פריטי הקלט המסוים ומגדירים קשרים מתמטיים ביניהם. על ידי אימון מתמיד של המודל, הוא הולך ומזהה את הקשרים הללו כדפוסים, שיהיו מוכנים כמעין ידע שהוא למד, לקראת שימוש בו, להצגת תחזיות, מענה לשאלות, חישובים של בעיות שנפנה אליו וכדומה.
#תהליך האימון
לפני וכדי שמודל יוכל לענות על שאלות או להציע תחזיות יש לאמן אותו. ממש כמו מאמן כושר או מפקד טירונים בצבא, שמקבלים אימון, הוא יקבל אוסף של נתונים, דאטה שיעמוד לרשותו, כדי שיוכל לזהות את אותם דפוסים. זה חייב להיות קלט (Input) עצום וגדול, כלומר המון נתונים, Big Data.
כדי לאמן מודל אנחנו נותנים לו אוסף של קלטים. הקלטים הללו ישתנו לפי סוג ומטרת המודל, אך המטרה הבסיסית, העליונה והתמידית שלו תהיה למצוא את הדפוסים בדאטה, כך שהוא יוכל ליצור תחזיות טובות ולתת תשובות טובות וללא הֲזָיוֹת (Hallucinations).
#שיטות אימון
למידת מכונה מתבצעת בכמה שיטות שונות, שכל אחת מחייבת "שיטת הוראה" שונה. ישנם 3 סוגים של למידת מכונה: למידה ללא פיקוח, למידה מפוקחת ולמידת חיזוק.
- למידה לא מפוקחת - היא למידת מכונה הלומדת באמצעות זיהוי עצמי של קווי דמיון ודפוסים וללא הנחיה אנושית.
- למידה מפוקחת - מתבססת על אימון בינה מלאכותית באמצעות דוגמאות מסומנות. כלומר, למידה שמסתמכת על קלט מבני אדם כדי לבדוק את דיוק התחזיות.
- למידת חיזוק - מתבססת על אימון בינה מלאכותית באמצעות ניסוי וטעייה. כלומר, מדובר בלמידה מחוזקת משמשת לתוכניות טיפול, תוך איסוף משוב באופן חוזר ונשנה (איטרטיבי) והשוואה מול הדאטה המקורית של כל פרופיל, כדי לקבוע את הטיפול היעיל ביותר לו.
כאשר מודלים אלה הופכים לעצמם, קשה יותר לקבוע את תהליך קבלת ההחלטות שלהם, מה שיכול להשפיע על העבודה, הבריאות והבטיחות שלנו.
#דוגמה
הנה דוגמה מהעולם הרפואי של רופאים והמטופלים שלהם:
בלמידה ללא פיקוח נוכל להשתמש כדי שהמודל יזהה קווי דמיון בין פרופילי מטופלים שונים ויאתר דפוסים שמתעוררים אצלם, כשהוא עושה זאת ללא הדרכה אנושית וללא פיקוח של רופאים ומומחים.
למידה מפוקחת, לעומת זאת, תסתמך על הקלט של הרופאים שיבצעו את האבחנה הסופית ויבדקו את הדיוק של חיזוי האלגוריתם. כלומר כאן המכונה תלמד מהמומחה, גם מהאבחנות המוצלחות שלו אך גם משגיאותיו. אם יוזנו למכונה נתונים של 2 קבוצות, חולים ובריאים, היא תזהה בעצמה מאפיינים שמשותפים לחולים במחלה מסוימת ושאינם נמצאים אצל אנשים בריאים. לאחר השוואה בין תחזיות המכונה לאבחון הסופי של המומחים, המכונה תלמד לזהות את התסמינים של המחלה ולסייע לרופאים לאבחן אותה נכון בעתיד.
למידת חיזוק תשמש לתכניות טיפול, בגישה איטרטיבית, תהליך חוזר ונשנה בו יוזן למכונה, שוב ושוב, המשוב החוזר על ידי הרופאים. המשוב יהיה לגבי יעילות התרופות, המינונים השונים ולגבי הטיפולים היעילים יותר ופחות, כך שהמודל ישווה יעילות של התרופות, המינונים והטיפולים לדאטה של החולה ויסיק מסקנות שיאפשרו לו לחזק בעתיד את הטיפולים המוצלחים והייחודיים יותר, אלו שיתאימו לפרופילי חולים, עם מאפיינים ומקרים שונים, לאור תגובות חולים משתנות, נסיבות שונות של המחלה ומצבי המחלה המגוונים לאורך הטיפול.
כלומר, החוקרים יכולים להשתמש במערכות למידת המכונה הללו ביחד, כדי לבנות מערכות בינה מלאכותית.
אבל - ויש כאן אבל משמעותי - יש לשים לב שככל שהמודלים הללו מכוונים באופן עצמאי, יהיה קשה יותר לקבוע כיצד האלגוריתמים השונים מגיעים לפתרונות שלהם, מה שיכול להיות בעל השפעה משמעותית על העבודה, הבריאות והבטיחות שלנו, בני האדם, כשאנו משתמשים בהם. לכן, באימון של מודלים גדולים (LLMs) משתמשים לרוב בכל השיטות הללו במקביל, כשלא פעם הן מאמנות אחת את השנייה.
הנה אימון מכונה פשוט (עברית):
https://youtu.be/CC-TGXxc-Go
כך המכונה לומדת ומדוע כדאי לשלב שיטות אימון שונות (מתורגם):
https://youtu.be/0yCJMt9Mx9c
וכך האלגוריתמים לומדים (מתורגם):
https://youtu.be/R9OHn5ZF4Uo?long=yes
שיטות אימון מכונה

למידת מכונה מתבססת על יצירה של מודל גדול. המודל עצמו הוא אכן אוסף גדול ומורכב של מספרים, שמייצגים מידע, כלומר דאטה שהוזן למודל מהעולם האמיתי כקלט (Input).
המספרים הללו מייצגים את פריטי הקלט המסוים ומגדירים קשרים מתמטיים ביניהם. על ידי אימון מתמיד של המודל, הוא הולך ומזהה את הקשרים הללו כדפוסים, שיהיו מוכנים כמעין ידע שהוא למד, לקראת שימוש בו, להצגת תחזיות, מענה לשאלות, חישובים של בעיות שנפנה אליו וכדומה.
#תהליך האימון
לפני וכדי שמודל יוכל לענות על שאלות או להציע תחזיות יש לאמן אותו. ממש כמו מאמן כושר או מפקד טירונים בצבא, שמקבלים אימון, הוא יקבל אוסף של נתונים, דאטה שיעמוד לרשותו, כדי שיוכל לזהות את אותם דפוסים. זה חייב להיות קלט (Input) עצום וגדול, כלומר המון נתונים, Big Data.
כדי לאמן מודל אנחנו נותנים לו אוסף של קלטים. הקלטים הללו ישתנו לפי סוג ומטרת המודל, אך המטרה הבסיסית, העליונה והתמידית שלו תהיה למצוא את הדפוסים בדאטה, כך שהוא יוכל ליצור תחזיות טובות ולתת תשובות טובות וללא הֲזָיוֹת (Hallucinations).
#שיטות אימון
למידת מכונה מתבצעת בכמה שיטות שונות, שכל אחת מחייבת "שיטת הוראה" שונה. ישנם 3 סוגים של למידת מכונה: למידה ללא פיקוח, למידה מפוקחת ולמידת חיזוק.
- למידה לא מפוקחת - היא למידת מכונה הלומדת באמצעות זיהוי עצמי של קווי דמיון ודפוסים וללא הנחיה אנושית.
- למידה מפוקחת - מתבססת על אימון בינה מלאכותית באמצעות דוגמאות מסומנות. כלומר, למידה שמסתמכת על קלט מבני אדם כדי לבדוק את דיוק התחזיות.
- למידת חיזוק - מתבססת על אימון בינה מלאכותית באמצעות ניסוי וטעייה. כלומר, מדובר בלמידה מחוזקת משמשת לתוכניות טיפול, תוך איסוף משוב באופן חוזר ונשנה (איטרטיבי) והשוואה מול הדאטה המקורית של כל פרופיל, כדי לקבוע את הטיפול היעיל ביותר לו.
כאשר מודלים אלה הופכים לעצמם, קשה יותר לקבוע את תהליך קבלת ההחלטות שלהם, מה שיכול להשפיע על העבודה, הבריאות והבטיחות שלנו.
#דוגמה
הנה דוגמה מהעולם הרפואי של רופאים והמטופלים שלהם:
בלמידה ללא פיקוח נוכל להשתמש כדי שהמודל יזהה קווי דמיון בין פרופילי מטופלים שונים ויאתר דפוסים שמתעוררים אצלם, כשהוא עושה זאת ללא הדרכה אנושית וללא פיקוח של רופאים ומומחים.
למידה מפוקחת, לעומת זאת, תסתמך על הקלט של הרופאים שיבצעו את האבחנה הסופית ויבדקו את הדיוק של חיזוי האלגוריתם. כלומר כאן המכונה תלמד מהמומחה, גם מהאבחנות המוצלחות שלו אך גם משגיאותיו. אם יוזנו למכונה נתונים של 2 קבוצות, חולים ובריאים, היא תזהה בעצמה מאפיינים שמשותפים לחולים במחלה מסוימת ושאינם נמצאים אצל אנשים בריאים. לאחר השוואה בין תחזיות המכונה לאבחון הסופי של המומחים, המכונה תלמד לזהות את התסמינים של המחלה ולסייע לרופאים לאבחן אותה נכון בעתיד.
למידת חיזוק תשמש לתכניות טיפול, בגישה איטרטיבית, תהליך חוזר ונשנה בו יוזן למכונה, שוב ושוב, המשוב החוזר על ידי הרופאים. המשוב יהיה לגבי יעילות התרופות, המינונים השונים ולגבי הטיפולים היעילים יותר ופחות, כך שהמודל ישווה יעילות של התרופות, המינונים והטיפולים לדאטה של החולה ויסיק מסקנות שיאפשרו לו לחזק בעתיד את הטיפולים המוצלחים והייחודיים יותר, אלו שיתאימו לפרופילי חולים, עם מאפיינים ומקרים שונים, לאור תגובות חולים משתנות, נסיבות שונות של המחלה ומצבי המחלה המגוונים לאורך הטיפול.
כלומר, החוקרים יכולים להשתמש במערכות למידת המכונה הללו ביחד, כדי לבנות מערכות בינה מלאכותית.
אבל - ויש כאן אבל משמעותי - יש לשים לב שככל שהמודלים הללו מכוונים באופן עצמאי, יהיה קשה יותר לקבוע כיצד האלגוריתמים השונים מגיעים לפתרונות שלהם, מה שיכול להיות בעל השפעה משמעותית על העבודה, הבריאות והבטיחות שלנו, בני האדם, כשאנו משתמשים בהם. לכן, באימון של מודלים גדולים (LLMs) משתמשים לרוב בכל השיטות הללו במקביל, כשלא פעם הן מאמנות אחת את השנייה.
הנה אימון מכונה פשוט (עברית):
https://youtu.be/CC-TGXxc-Go
כך המכונה לומדת ומדוע כדאי לשלב שיטות אימון שונות (מתורגם):
https://youtu.be/0yCJMt9Mx9c
וכך האלגוריתמים לומדים (מתורגם):
https://youtu.be/R9OHn5ZF4Uo?long=yes
