שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.
»
«
איך יוצרים סרטים וסרטונים ב-AI?
כלי יצירת וידאו בעזרת בינה מלאכותית גנרטיבית מתפתחים במהירות אדירה. עד לא מזמן זו הייתה המהפכה הבאה של הבינה המלאכותית, אבל מהירות הפיתוח של הטכנולוגיה הזו, כמו כל תחום הבינה הגנרטיבית, היא בלתי נתפסת ולכן היא כבר כאן ולא עוצרת לרגע.
וכך, נוסקים מה שהיו שנה קודם סרטונים של 4-5 שניות באיכות תמונה בסיסית עד נמוכה והבנה בינונית למדי של הפרומפטים (ההנחיות הטקסטואליות שבהן מתאר המשתמש את התוצאה המבוקשת). בתוך שנה הם הפכו לסרטונים מעולים, באיכות תמונה מעולה, היצמדות להנחיות הפרומפט ומאפשרים לבקש זוויות צילום, סוגי שוטים, סוג או ז'אנר הסרט ועוד.
וגם קהילת הקוד הפתוח (ראו בתגית "קוד פתוח") לא טומנת ידה בצלחת. לעומת מודלים מסחריים סגורים ויקרים למשתמש, המודלים שלהם מאפשרים יצירת סרטונים בארכיטקטורה עם שקיפות וחדשנות וללא עלות, תוך אימוץ של טכנולוגיות AI מהחדשניות ביותר, גם בחינם להורדה והרצה על המחשב המשתמש וגם אונליין, בהגבלות בשל העלות שעולה לשתפן כך.
מדהים לחשוב שמה שבעבר צולם באלפי דולרים מינימום לשניה של סרט, נוצר עכשיו בכמה פקודות מקלדת, שמייצרות סרטונים שווי ערך להפקה מורכבת, יקרה, עתירת מקצוענות וכוח אדם, כשלא פעם ביצועי אפקטים מיוחדים ו-CGI, יקרים ומורכבים לצילום, מוחלפים במחי פקודת מקלדת פשוטה ודמיון מפותח של היוצרים.
היום הבינה המלאכותית יוצרת סרטונים מעולים וברמה מטורפת, אפילו על בסיס של תמונות סטילס (תמונות רגילות), שהועלו אליה ונוספה להם הנחייה שאומרת מה "עושים" האובייקטים שבתמונה כשהם "משתתפים בצילומים".
וזה בדיוק מה שמדאיג היום רבים בתעשיית הקולנוע. קשה להימלט מהמחשבה כמה ואילו מקצועות עומדים להיעלם בקרוב מהעולם, מהמסך, הגדול או הקטן. בצל הקדמה הזו עלולים כמה א.נשים לאבד את פרנסתם. החלפתם הצפויה בבינה מלאכותית תהיה כי היא זולה, יעילה, צייתנית וכזו שאף פעם לא חולה, לא עצובה ולא מאחרת, כי הילד שלה מרגיש לא טוב בבית...
אז לצד זה שהבינה המלאכותית מרגשת, תורמת ליצירתיות וגלומות בה אינספור אפשרויות בלתי נגמרות, היא טומנת בחובה גם איומים וסכנות לאנושות ולנו בני האדם. תעשיית הקולנוע כולה עלולה להיות מוחלפת בהדרגה במיליוני רובוטים שקוראים להם AI ואין להם אפילו גוף לחבוט בו. רק אינטליגנציה מלאכותית, שלא מרחמת ולא חומלת, כי היא עושה רק מה שאומרים לה. במקלדת, כן?
הפתרון, כי חייבים לדבר אופטימית שוטפת, הוא ללמוד את הכלים החדשים הללו. יידע כל מקצוען קולנוע שבמקום להיות מוחלף ב-AI, עדיף לדעת AI ולהשתלב בעולם החדש הזה.
הנה Google Veo 2 המוביל:
https://youtu.be/VNWLHAnRc0o
הכלי האינטגרטיבי שעושה תהליך שלם מפרומפט קטן:
https://youtu.be/Aw1TQwkCLQs
מודל וידאו בינתי ישראלי (עברית):
https://youtu.be/CkpLiPWLcHo
אפשרויות הווידאו AI שהולכות ומתפתחות במהירות - הנה Neurawik:
https://youtu.be/1HVkzZiv82Q
Sora רצה להחליף את עשיית הסרטים הרגילה (עברית)
https://youtu.be/kx3H1jFHncY
דברים שרק AI יכול לעשות (ללא מילים):
https://youtu.be/f-Vbm-iQ_Xw
הדרכה ל-Image to Video שהופכת תמונה לסרטון וידאו (עברית):
https://youtu.be/mR3rN8vphC8
קליפ AI של שיר של הביטלס:
https://youtu.be/Z9MZdNrGbM4
כך יוצרים מתמונות בעזרת פרומפט וידאו AI בקלות עם Minimax (עברית):
https://youtu.be/F-gl4E5yo60
כך יוצרים לייב פורטרייט - דיוקן עם מחוות שלכם:
https://youtu.be/kM3KSrPrh9c
קליפ מתמונה בשיטה של Image to video:
https://youtu.be/yCczY9PNeao
קדימון AI מדומה לסרט מד"ב שאולי יצולם:
https://youtu.be/oAIrJP4n5sQ
כך מחליפים פנים לדמויות וידאו ב-Faceswap:
https://youtu.be/vVs0DZ8VyGQ
מינימקס המטורף בווידאו AI:
https://youtu.be/4QXCV_TYKZc?long=yes
הנה Dream Machine של לומה:
https://youtu.be/N_hlfwWtgPQ?long=yes
על סקיצה של ג'ון לנון שהושלמה 40 שנה אחרי מותו עם קליפ משולב דמויות AI:
https://youtu.be/APJAQoSCwuA?long=yes
Magic Hour AI - כלי שיוצר סרטונים עד 60 שניות, שזה הכי הרבה:
https://youtu.be/eSpuvmRhcPg?long=yes
KREA - מודל ליצירת סרטונים AI:
https://youtu.be/OBewafac0Xs?long=yes
MINIMAX - עוד מודל וידאו מדהים מסין:
https://youtu.be/7JZLLxV1AGc?long=yes
כלי וידאו שמייצר ישר סרטון רב-סצנות:
https://youtu.be/BCCUNiToo94?long=yes
כלי הווידאו המומלצים לתחילת 2025:
https://youtu.be/K04zRJ8Vl_s?long=yes
וכך מייצרים סרטי וידאו ארוכים ב-Canva תחילת 2025:
https://youtu.be/tWmVbn4rUd0?long=yes
אילו מקצועות ייפגעו מהבינה המלאכותית הגנרטיבית?
אנו בעידן הצ'אט בוט המדהים של Open AI שנקרא ChatGPT. ה-GPT הוא קיצור בראשי תיבות של Generative Pre-trained Transformer. הצ'ט בוט הזה מוביל שורה של פיתוחים דומים ולמעשה הוליד, כמעט יש מאין, עולם חדש של טכנולוגיות. יצירתיות, חדשניות ומדהימות.
העניין הזה כבר הוליד פועל חדש בעברית, כשהמערכות הללו מתחילות לג'נרט (מלשון generate), כלומר לייצר תוכן באופן אוטומטי על ידי מחשבים ומודלי שפה תבוניים, דוגמת ChatGPT, Claude, Gemini ודומיהם.
מודלי השפה הללו מתקדמים במהירות והמירוץ לפתחם ימשיך. במקביל לעבודה המדהימה שעושים המפתחים של O.AI יוצאים כל הזמן כלים מתחרים, כולל של ענקיות כמו גוגל, פייסבוק ואמזון, העובדות על מוצרים דומים.
ביחס לכל מוצר AI שהיה נגיש לציבור בעבר, ChatGPT ומקביליו עושים דברים מדהימים, מהפכניים וכמעט בלתי נתפשים במהירות שהם מבוצעים.
אז נכון שיש לצ'אט הזה ולעמיתיו עוד דרך עד שנוכל לסמוך עליו ועל הידע והמידע שהיא מציע לנו בכל התחומים, אבל בתחומים מסוימים הם כבר כאן ועם יכולות בינה מלאכותית שהן די מהפכניות. בעניינים אחרים המרוץ לבשלות ככל הנראה ימשיך והם יגיעו די מהר...
קשה אולי להאמין שהמקצועות שאנו מכירים ייעלמו לגמרי. וגם אלו שאכן ייעלמו - זה לא יקרה מיד, אבל זה תהליך שיימשך, תהליך בו מקצועות עבודה יהפכו יותר ויותר למקצועות של פיקוח על הבינה המלאכותית שעושה אותה.
כשהאדם מפקח על עבודת המכונה, הוא יצטרך להיות בתחום כדי להיכנס לפעולה כשהמכונה נתקלת בבעיה שהיא לא יודעת לפתור, לא מתפקדת, מתקלקלת וכדומה.
אז אילו סוגי מקצועות ייפגעו מהבינה? - ההערכה היא שבעיקר מדובר בעבודות הקשורות בשפה. כל מי שמשתמשים בעבודה שלהם בשפה, באופן ישיר ומשמעותי ולא הכרח ביכולות אחרות, פיזיות, ליטרלי שריריות, יכולים לשער שהבינה המלאכותית תוכל לבצע במעלה ההתפתחות שלה את מלאכתם.
עיתונאים, מידענים, תחקירנים, אנשי שיווק, פרסום ויוצרי תוכן, מתכנתים ואפילו מוסיקאים - אצל כולם השפה היא כלי מרכזי בו הם עושים שימוש בליבת שיטת העבודה. אז זה לא שלא יהיו עיתונאי-על, או מוסיקאים אנושיים - הם פשוט יהיו מעטים ומעולים. השאר ימצאו את עצמם מוקפים באנשים שאינם אנשי מקצוע, אך למדו לנצל כלי AI ולייצר תוצרים שייתחרו בשלהם.
גם אנשי מדיה צריכים לדעת שהמקצועות שלהם יעברו שינויים משמעותיים ולמעשה כבר עוברים. עורכי סרטים, צלמים, יוצרי סרטים, מקליטים, עובדי אולפנים, טכנאי סאונד, עורכי אפקטים ומעצבים גרפיים - המקצועות הללו כבר עוברים שינויים וכדאי שיתעדכנו בהם היטב כי כך יוכלו להשתנות עם התחום ולהתבגר לחידושי ה-AI שייכנסו אליו, למצוינות והובלה בו.
הנה השפעת הבינה המלאכותית על העולם האנושי שלנו (מתורגם):
https://youtu.be/RzkD_rTEBYs
יחליף את המורים? - למה בחינוך מודאגים ממודל השפה החדש?
https://youtu.be/Fn8jDanbf0c
האם הג'י פי טי יחליף למשל את הסופרים ויכתוב ספרים, כמו שהוא מייצר היום ספרי ילדים (עברית):
https://youtu.be/sDjFRAP0Szg
ומה הוא עושה לתלמידים והמורים (עברית):
https://youtu.be/vmmUiyeGNB8?long=yes
איך ה-AI ייקח לנו את העבודה? ואיך למנוע?
בפשטות כן. אולי לא בכולנו ולא בכל אנשי המקצוע אבל הבינה המלאכותית תוכל לגרום לקשיים עבור רבים - בעבודה ובעולם התעסוקה. באופן מסוים, היא עלולה להביא את העולם אפילו למשבר כלכלי של ממש.
אלא אם... חכו עוד מעט.
בשלהי שנת 2022 כל העולם דיבר לפתע על הצ'אט בוט המדהים של Open AI שנקרא ChatGPT. ה-GPT הוא קיצור בראשי תיבות של Generative Pre-trained Transformer.
מודל השפה שעליו התבססו המפתחים בחברת Open AI נקרא GPT-3, אבל גרסה 4 ואלו שאחריה לא יאחרו והמירוץ לפתח אותו ומודלים רבים אחרים יימשך. כי במקביל לעבודה המדהימה שעושים מפתחי Open AI פותחו די מהר כלים מתחרים.
ביחס לכל מוצר AI שהיה נגיש לציבור בעבר, ChatGPT ומקביליו עושים דברים מדהימים, מהפכניים וכמעט בלתי נתפשים במהירות שהם מבוצעים.
אז נכון שיש לצ'אט הזה ולעמיתיו עוד דרך עד שנוכל לסמוך בעיניים עצומות על הידע והמידע שהם מציעים לנו, אבל בתחומים מסוימים הם כבר כאן ועם יכולות בינה מלאכותית שהן די מהפכניות.
#אז הלך עלינו?
הבינה המלאכותית שמפגינים ChatGPT ושאר כלי ה-GPT יכולה לעשות בהצטיינות עבודות של איסוף ומיון של מידע או ידע (שני דברים שונים) ואחרי זה גם כתיבה ויצירה.
כי ה-AI ברמה הגבוהה הזו יודעת לחקות אמנות, לצייר, לתקן תמונות, למצוא תשובות לשאלות, להכין שיעורי בית, להמציא מתכונים, לכתוב עבודה לבית הספר, לחבר מוסיקה, לערוך וידאו, לכתוב קוד ולתכנת, לחבר טקסטים, לנסח מכתבים ומאמרים ועוד.
אבל היא יודעת בעיקר ליצור דברים דומים למה שכבר נעשה. אמנם ברמה גבוהה, אפילו מאוד, אבל על סמך חשיבה מקצועית וסטנדרטית של אנשי מקצוע בתחומים השונים.
#מה היא לא?
בתחום היצירה הבינה המלאכותית לא תשתווה לאנשים יצירתיים, מקוריים, שיסטו ממה שכולם יודעים לעשות ויחוללו את הפלאים שלהם. היא תדע לעשות טוב יותר ומהר יותר את מה שאנשי מקצוע טובים עושים, אבל היא תתקשה לצאת מהטוב אל המצוין, הגאוני, המבריק.
לכן היא לא תפגע באנשי מקצוע מעולים ומקוריים, בבני אדם יצירתיים, עם חשיבה מיוחדת ולא שבלונית, עם יכולת המצאה.
#אז מה ההזדמנות?
וזו רבותי ההזדמנות שלכם. משתלם היום לפתח את היצירתיות והחשיבה המקורית, ללכת על להיות קצת יותר אמן ממידען, להיות מעט פחות מהנדס "רגיל" ויותר ממציא ומי שמוצא פתרונות, כולל באינטרנט אבל לא רק - כי פתרונות לתחום אחד כבר מיושמים לא פעם בתחום אחר.
נמשיך? - להיות יותר סופר מאשר עיתונאי, יותר מלחין מאשר רק נגן ויותר מעצב מאשר גרפיקאי ביצועיסט.
#יכולות?
לשם כך דרושות יכולות מגוונות שמערכת החינוך והעולם המקצועי לא מפתחים יותר מדי. יצירתיות, ידע כללי, סקרנות וחוצפה הם חלק מהיכולות הללו.
יצירתיות - הציצו אצלנו בתגית "יצירתיות" והבינו את הצד הזה ואיך לפתח אותו. התחלה מעולה לרכישת ידע כללי תהיה באאוריקה, בהאזנה לפודקסטים, צפייה בסרטי דוקו וסרטונים של ידע ביוטיוב ועיון בבלוגים של ידע, באזור המסקרן והלא משעמם של האינטרנט ובתנאי שהוא מתויג ולא חד-ממדי.
סקרנות - גם היא תכונה שנולדתם איתה וכדאי לשמר, במיוחד כשמסביבכם יעשה כמעט כל גוף חינוכי ניסיון להשבית אותה, לטובת חיפוש תשובות סטנדרטיות ושתהיו ותנהגו "כמו כולם". כל דבר שתלמדו לבד ותחקרו אין ספק שתזכרו טוב יותר ויום אחד עשוי לשרת אתכם, לעומת שיעורי בית שכמעט אף פעם לא.
היזהרו מתופעה שבעולם החינוך מוכרת כ"Yessing". חיפוש חשובות שהמורה יאהב, תשובות לשאלות שניתן למצוא בקלות ואפילו בלי חשיבה. אז מה הטעם בהן? לא עדיף שישאלו אותנו בבית הספר מעט פחות שאלות, אבל כאלה שיעודדו אותנו להשתמש בשתי האונות או בכל אזורי המוח? חקרו כאן את תגית "סקרנות".
חוצפה - על זה לא צריך להרחיב אבל נדגיש שמדובר בחוצפה מקצועית ולא התנהגותית. להעז. לא לומר לעצמכם שאינכם יודעים מספיק כדי לפתח או להמציא, לחבר או לצייר. פשוט ללכת על זה, לחקור איך, לאסוף דרכים, לחפש שיטות וטכניקות לאמנות וליצירה ביד.
נסו להמציא שיטות חדשות לעשות דברים וחקרו אותן, לנסות לעבוד איתן. חפשו ידע ושאלו באינטרנט עד שתקבלו תשובות. כתבו דברים כי לא פעם רק כשכותבים מבינים. זה בסדר לגנוב ולהעתיק ואז לפרק, ללמוד, להרכיב מחדש, לעבד ולהבין כיצד לשלוט במיומנויות הכרחיות. אם אין זמן אז קומו שעתיים קודם או לכו לישון מאוחר, גם אם תהיו קצת עייפים בבית ספר. גם ככה, אתם יודעים...
כישלונות - עוד דבר שיעזור ויהיה הכרחי הוא היכולת שלא להיבהל מכשלון ואפילו ללמוד לחבק אותו. חינכו אותנו שההצלחה היא המטרה, בעוד שמה שמתקשר אצל רובנו עם כישלון הוא כמעט תמיד אכזבה ופנים נפולות. אז כדאי שתדעו שכישלונות הם חלק בלתי נפרד מההצלחה.
היכולת שלא להרפות וליפול ברוח מהכשלון היא שמבדילה בין בני אדם. היא שמביאה נשים ואנשים בסופו של דבר להצלחה. אדיסון, מגדולי הממציאים, אמר על זה פעם שההמצאות הגדולות שלו היו כולן כשהוא לא הצליח להיכשל...
כדאי להאמין לו. אמר את זה אדם שחתום על מאות פטנטים והמצאות ששינו את העולם. בשום מקום לא נכתב כמה פעמים הוא נכשל בכל תהליך, עד שהוא הצליח בו. תמיד מספרים רק על ההצלחות אז אנחנו לא יודעים על הקשיים והנפילות, על התסכול וההפסדים.
אבל עכשיו אתם יודעים. לכן אם אומרים לך שזה גרוע? -המשיכי. צעקו לך בוז? - המשך. כמעט כל מצליחן ופורץ דרך שמע את זה בהתחלה. על בוב דילן אמרו שיש לו קול של צפרדע, המטוסים של האחים רייט צללו בזה אחר זה, הבכורה של האופרה הכי פופולרית בהיסטוריה "כרמן" הסתיימה בקריאות בוז וירקות שהושלכו על הבמה. את הסרט "בלייד ראנר" קטלו כשהוא עלה לאקרנים ואת סוקרטס הוציאו להורג על השחתת הנוער...
אז אמרו... מה הם יודעים? מי מהמבקרים והפוסלים את היזמת שאת הצליח לפני זה?
לא להרפות! אין הבטחות, אבל עקביות חשובה לא פחות מחשיבה, יצירתיות, סקרנות ומקוריות. בלעדיה כמעט ואין סיכוי להגיע למימוש כי לא מגיעים בכלל.
#אתם הורים?
אם אתם מגדלים היום את ילדיכם יש לכם אחריות ואפשרויות. תנו להם כלים, יכולות, הרימו ותפתחו את הכשרונות המלבלבים שלהם. אל תכבו אותם עם הרגיל ועם מה שאתם למדתם או רציתם להיות. בעולם שלהם אתם תהיו מבוגרים מדי או, וסליחה שאנחנו מזכירים, אולי כבר לא תהיו.
תנו להם לחקור מה ירצו לעשות. חישפו אותם לתחומים, לעולמות ולתופעות. תנו להם דוגמה אישית, קראו ספרים, אל תעשנו, אל תהיו בטטות - צאו לעשות ספורט ואם כבר אז גם אכלו נכון. צאו איתם לטבע, לטיול או הליכה, הביטו יחד בפרחים, נסו לזהות אותם ולחקור עליהם.
קראו ספר בעצמכם והביאו את הספריה של הבית לסלון, אל מול עיניהם. כבו מדי פעם את הטלוויזיה ונהלו שיחות ביניכם אל מול עיניהם ואיתם. שתפו אותם, שאלו על מה מעניין אותם ומה ירצו להיות, מה החלומות שלהם, איפה הם רואים את עצמם בגיל 25.
התעניינו בהם באמת. מה מסקרן אותם. מה מרגש ומלהיב בשבילם. התעניינו איזה חוג הכי מעניין אותם ואם אין מספיק כסף בקשו בשקט הנחה כדי שלא לבייש אותם.
נסו להשיג להם דברים שיאפשרו להם לפתח את תחומי העניין, לקנות יד שנייה, לחנך אותם שחדש זה ממש סתם ואם ראו משהו זרוק שלא יתביישו לקחת, לפרק ולהרכיב ממנו חללית. צפו איתם בתכניות מדע או בסרטי דוקו, הראו להם סרטים קלאסיים, למדו אותם ששחור לבן הוא לא פחות צבעוני ושמינימליזם הוא לא פעם הכי עשיר שיש (Less is more).
אה, ובגיל צעיר ספרו להם סיפור לפני השינה. זה כל כך חשוב שאתם לא מעלים על הדעת. הרבה יותר מ-GPT, מציור בינתי וממדעי המחשב באוניברסיטה. היו הורים, לא רק אנשי קריירה.
הנה ChatGPT ולמה בחינוך מודאגים ממנו:
https://youtu.be/Fn8jDanbf0c
בעלי מקצוע מפחדים על העבודה שלהם (עברית):
https://youtu.be/0AGYOv0sGHg
תראו למשל איך הוא מייצר קליפים (עברית):
https://youtu.be/8CmXtj5gW2I
במבט לעתיד, השינוי שה-AI ייצר הוא אדיר ותלוי גם בנו (מתורגם):
https://youtu.be/RzkD_rTEBYs
איך הצ'אט GPT בניתוח קוד? (עברית)
https://youtu.be/Z46pqHFuKHs
בחיוך - מה הכלי היחידי שיש לנו כבני אדם כדי לזהות אם הכותב או הדובר הוא בוט כמו ChatGPT? (עברית)
https://youtu.be/nes_xZjZweY
מה קורה כששואלים את הבינה של גוגל על זה (עברית):
https://youtu.be/oh4Bq8ifgK4?long=yes
זה יקרה בשלבים ולא מיד:
https://youtu.be/iNKFOCki42I?long=yes
וסרטון שמדגים את זה יפה:
https://youtu.be/5rqVB44kIv0?long=yes
מהי טפשת ה-AI שתפגע באיכות התוכן והקוד?
אחת התופעות שמתחילות להתגלות בשנים האחרונות, מאז הפריצה של הבינה המלאכותית הגנרטיבית, היא של טפשת שגורמת הבינה הגנרטיבית למידע ולתוכן באינטרנט.
ברור שהשימוש הכל כך קל ב-Generative AI מקל על המשתמשים, אבל ידוע לכל שיש לבדוק את המידע שהיא יוצרת לפני שמחזירים אותו לציבור כמידע שיצרו בני אדם. מסתבר שרבים לא מבינים את החולשות והפגמים שעדיין מלאים בהם מודלי השפה, אותם מודלים גדולים (LLMs) שעושים היום את הידע. אם אלה תכנים שהתקבלו מקלוד או ChatGPT, רכיבי AI שנועדו לייצר קוד בתכנות, וידאו או תמונות גנרטיביות שיוצרים מנועים שונים ועוד.
התופעה הזו כבר פוגעת באיכות המידע באינטרנט, לפי בדיקות אובייקטיביות שעורכים באופן תקופתי לאיכות הרשת. מסתבר שלא זו בלבד שבני אדם מסתמכים על מידע שחלקו לא מדויק בלשון המעטה, אלא שהקרולרים עצמם, אותן תוכנות שאוספות את המידע מהרשת לצורך אימון, הזנת ועדכון מודלי השפה הגדולים - מסתבר שהם עצמם מסתמכים על המידע הגרוע הזה. ובדיוק כך, הוא חוזר למודל השפה ונכנס לתוכן שמקוטלג לטוקנים (Tokens) ובחזרה לדאטה שעליו הם מסתמכים. התוצאה היא שיותר ויותר מידע לא בדוק ולא אחראי, שהגיע מלכתחילה לרשת ממודלי שפה לא בשלים מספיק, חוזר ומפרה את המודלים הבוגרים, שאמורים לקבל מידע אנושי ואיכותי ולא תמיד יודעים לאתר את השגיאות שבו.
גם בעולם העסקים והארגונים יש כבר החמרה. הירידה באיכות התוכן שבאינטרנט נובעת מהשימוש הגובר והולך בחומר בינוני, שהגיע מהבינה המלאכותית הגנרטיבית, אך לא בוגרת, של הדור הראשון. כבר עם ההשקה של ChatGPT ב-2022, גילו מנהלים את הצ'טבוט שמאפשר להם ליצור חומרים באמצעות בינה מלאכותית יוצרת (generative AI) וחיפשו דרכים להשתמש בהם, במקום בעבודה של עובדים או חברות מיקור החוץ שבהם השתמשו בעבר. מעט מאותם מאמצים התגלו כיעילים ומרביתם נשארו בפוטנציאל יותר מאשר החליפו עובדים.
אך בתחום התכנות זה כן קרה. מסתבר שמודלים כמו CoPilot, Claude ואחרים מייצרים קוד במהירות ומחליפים את הג'וניורים, המתכנתים הצעירים בתעשייה. לפי סקרים שמתפרסמים בעולם נראה שקצב האימוץ של המנועים הללו הוא גבוה, במיוחד ביחס לזמן הקצר שבו הם פועלים. אלא שבסוף 2024 מתחיל להסתבר שכ-40% מהמתכנתים בעולם משתמשים בכלים כאלה ומשגרים קוד שלפחות בחלקו הוא פחות מוצלח. קוד זה חוזר ו"נלמד" על ידי המודלים ומוריד את איכות התכנות שלהם באופן מתמשך, שעלול אף להחמיר.
מה בין צ'אטבוט, LLM וסוכן AI שמבצע משימות?
צ'אטבוט (Chatbot) הוא סוג של סייען חכם וממוחשב, שניתן לשוחח איתו בהתכתבות צ'אט, או במקרה של צ'אטבוט מתקדם יותר גם שיחה מבוססת דיבור.
כמובן שהצ'אטבוט הוא מערכת מבוססת AI (בינה מלאכותית, או אינטליגנציה מלאכותית) שמייצרת שיחה מלאכותית עם המשתמש - מבלי שבצד השני נמצא אדם אמיתי.
בעשור השני של המאה ה-21 הצ'אטבוט הלך ותפס את מקומו ברשת ובאפליקציות שונות והפך לדרך חדשה לחלוטין להשתמש באינטרנט. לקוחות מצאו את עצמם מנהלים התכתבות בצ'אט או שיחה אוטומטיות עם בוט, שנתן מענה מותאם אישית ושיפר את עצמו עם הזמן.
הצ'טבוט הבטיח לספק שירות לאורך כל שעות היממה, 24/7. הוא סימן הפחתה של המון מהעומס של שירות הלקוחות האנושי, חסך זמן למתעניינים וללקוחות שביקשו שירות וחסך לעסקים הרבה כסף.
התגלה שבוט AI ממוקד ואיכותי מסוגל להציע תגובות מהירות ומדויקות, מה שהוביל לשיפור ניכר בחוויית הלקוח ולעלייה בשביעות הרצון, אף שהיו לקוחות שהתעקשו לשוחח עם בן אדם, שהיה עמוס עכשיו פחות ולכן גם זמין להם הרבה יותר.
היתרונות של הצ'טבוט בטיפול אישי במשתמש ובלקוח היו עצומים. שולבו בו טכנולוגיות פרסונליזציה מתקדמות שהלכו והתפתחו, תוך גיוס הבינה המלאכותית לצרכי השיווק, המכירות והתמיכה.
רבים חזו שצ'אטבוטים עשויים להחליף חלק ניכר מהשימוש באתרי שירותים שונים ולייתר אותם בעתיד, מה שהתממש אבל חלקית.
בזמנו החליטה פייסבוק להשתמש בצ'אטבוטים בתוך שירות המסרים שלה מסנג'ר. היא אפשרה למפתחים חיצוניים לפתח צ'אטבוטים שיתנו שירותים ומידע מאתרים אחרים. ההכרזה על פלטפורמת הצ'אט בוט של פייסבוק מסנג'ר קדמה את רעיון הצ'אטבוטים המקוונים באופן משמעותי, במיוחד למשתמש הנייד בסמארטפונים ושעונים חכמים, אם כי הזינוק הטרנדי שנוצר עם ההשקה הלך ונרגע עם הזמן.
ההבשלה של אותם צ'אטבוטים באה בעשור הבא דווקא. זה קרה עם הגעתו של ChatGPT, מודל השפה הגדול הראשון (LLM), שאחריו הגיעו נוספים, כמו Gemini או Claude. מודל השפה הזה הוא בעיקרון מנוע בינה מלאכותית גדול ורחב-אופקים, המצויד ביכולת להבין שפה טבעית, אנושית, ויכול לעשות המון דברים, כלומר להתמודד עם מגוון ענקי של משימות ושהיכולות שלו הולכות וגדלות מיום ליום. ראו בתגית "LLM".
ממודלי השפה הגדולים התפתחו גם מנועי היצירה של הבינה הג'נרטיבית (Generative AI), המייצרים תמונות, שירים, וידאו ועוד. הכירו בתגית "GenAI".
אחריו נולדו סוכני ה-AI, צ'אטבוטים שממלאים משימות עבורך, על ידי שילוב בין היכולת הבינתית של מודל השפה הגדול כמו ChatGPT, עם היכולת של רכיב תוכנה שיכול לפעול באופן עצמאי וממוקד, למילוי של משימה ספציפית עבורנו, כמו לתכנן טיול, לקנות מוצרים אונליין, לטפל בדואר האלקטרוני שלנו וכדומה.
אותם סוכני AI הם רכיבי תוכנה אוטונומיים, יישומים מבוססי בינה מלאכותית, המסוגלים לתפוס את סביבתם, לקבל החלטות ולפעול לביצוע או השגת מטרות ממוקדות בשירות המשתמש. הכירו אותם בתגית "סוכני AI".
כלומר, אם הצ'טבוט של העשור שהחל ב-2010 היה עובד חרוץ אך לא חכם מדי, הצ'טבוט הבינתי של מודל השפה הגדול בעשור שאחריו רכש השכלה ופיתח את יכולותיו האינטליגנטיות באופן שהפך אותו למומחה ואז מגיע הסוכן הבינתי, AI agent והוא כבר עובד שמתמחה במשימה מסוימת ועושה אותה בצורה מיומנת וחרוצה.
עסקה טובה לרובנו.
פעילות נחמדה
============
בקישורים שלמטה יש לינק לצ'ט בוט נהדר. נסו לשוחח איתה (באנגלית) ולהכיר קצת את חוויית השיחה עם צ'ט בוט אופייני.
הנה עולם הצ'אטבוט:
http://youtu.be/iE9LtfQAYYU
עוד על השימוש בצ'אטבוטים ברשת:
http://youtu.be/G8z--x5tFOI
ההכרזה על הצ'אט בוט במסנג'ר של פייסבוק:
http://youtu.be/EOYnFUJyOlQ
ומנגד - כשהושק הצ'אטבוט של מיקרוסופט הוא "הסתבך" עם ביטויי גזענות קשים:
http://youtu.be/LA49GBcbudg
מהו ומה היתרון של מודל שפה קטן, או SLM?
מודל שפה קטן (Small Language Model), ובקיצור SLM, הוא מודל מתמחה או מומחה, דגם קטן יותר ומזוקק, מה שהופך אותו להבטחה גדולה וממשית לצרכים עסקיים, בעולם האמיתי.
מודלים קטנים של שפה, או כמו שתרגום מכונה מכנה בטעות "מודלים של שפות קטנות", מאפשרים היום אימון בינה מלאכותית על ידע ספציפי לתחומים שונים ובכך להתאימם לתעשיות ספציפיות, משימות וזרימות עבודה תפעוליות.
SLM הוא קצת כמו סוס חזק ומהיר שיכול לבצע משימות ממוקדות, לעומת כרכרות LLM עמוסות, כבדות ולכן גם מוגבלות בתמרון.
שוב ושוב נשאלת השאלה האם יכולים מודלי שפה קטנים (SLMs) לנצח את ה-ChatGPTים או ה-Claudeים למיניהם, את האחים הגדולים והוותיקים, המצוידים, מאומנים ועתירי המשאבים מעולם ה-LLMs?
או במספרים - האם מודל של מיליארד בודד של פרמטרים (1B) יכול לגבור על היכולות של מודל עם 405B פרמטרים, יותר מפי 400 ממנו?
אז כן. בניגוד למודל שפה גדול של עולם ה-LLMs, שמעבד כמויות אדירות של ידע כללי, המודל הקטן מעולם ה-SLMs בנוי במחשבה על דיוק ויעילות. עלות הפעלתו היא נמוכה משמעותית, הוא דורש פחות כוח חישוב ובנוי כדי לספק תובנות רלוונטיות יותר לעסק מאשר מקביליו הגדולים והכלליים.
בעולם המודלים הגדולים של שפה כבר הסתבר שאופטימיזציה של החישובים ב-SLMs כאלה יכולה אכן לעלות את היכולות של הקטנים הללו על אלו של דגמים גדולים יותר, שמנסים ומצליחים להיות חכמים מכולם ויודעי-כל, אבל תפעולם יקר ומסורבל יותר והם לא יעמדו ביכולות ההתמחות של מודל קטן שלא מביט לצדדים ומרוכז רק במשימתו.
מחקרים שבחנו את היעילות של שיטה ששמה Compute-Optimal TTS, למשל, הראו ששיפור הביצועים של מודלים קטנים מאפשר לעלות בהם את הביצועים על אלו של דגמים גדולים יותר, במשימות מתמטיות כמו MATH-500 ו-AIME24 ובשיפור יכולות החשיבה של LLM.
#ביצועים, התמחות ואבטחת נתונים
לא מעט חברות וארגונים מבינים שהשאלה היא לא על איזה מודל בינה מלאכותית אנשים קופצים, אלא איזה מודל יספק לחברה או לארגון ערך עסקי אמיתי. SLMs מאפשרים לעסקים לפרוס AI ישירות על מחשבים ניידים, רובוטים וטלפונים ניידים ולהבטיח בכך גם שהנתונים, הדאטה שלהם, יישארו מוגנים.
דגמי SLM, שמותאמים להצטיין בתחומים ספציפיים - פיתוח תוכנה, רפואה, פיננסים וכדומה, יספקו תוצאות מדויקות ואמינות יותר, המותאמות לצרכי הארגון הייחודיים וליכולותיו.
ה-SLMs המזוקקים והקטנים יותר מצליחים לשמור על יכולות חשיבה חזקות וממוקדות תחום, ביחד עם יעילות המאפשרת להם לפעול באופן מקומי, מבלי להסתמך על מחשוב ענן.
#סוכני AI
אם SLMs מצוינים עבור עסקים הרוצים לייצר משימות אוטומציה שלא נזקקות לכל הרעש והצלצולים שמציע ה-LLM, אז מה עם סוכני בינה משויפים?
אז ברור שגם מפתחים של סוכני AI צריכים דגמים קלים, מהירים ומתמחים מאוד, המאומנים על ידע מעמיק וספציפי לתחום בו מתמחה הסוכן. בזכות דרישות המשאבים המצומצמות והגודל הקטן יותר שלהם, שירותי SLM יכולים בדרך כלל להתאים בול למגמת ה-Agentic AI, בכך שהם מאפשרים קבלת החלטות אוטונומית בקצה.
אמנם מודלי SLM עשויים לדרוש הכשרה מיוחדת מלכתחילה, אבל מנגד עומד היתרון של הפחתת הסיכונים הכרוכים בשימוש ב-LLM של צד שלישי וספקים חיצוניים. זהו יתרון עצום, המצטרף לשאר יתרונותיהם: יכולת הסבר גדולה יותר, ביצועים מהירים יותר ויכולת ביצוע מדויק, עקבי ושקוף יותר, המצטרפים לשליטה רבה יותר על פרטיות ואבטחת הנתונים.
#שילוב של המודלים
כיום מבינים שאמנם אין תחרות ל-LLMs בגודל ובעוצמה, אך הסתמכות יתר עליהם יכולה להוביל לתחושת ביטחון מוגזמת, לשאננות ולטעויות קריטיות שעלולות לחמוק מבלי להתגלות.
כך שאולי LLMs ו-SLMs אינם סותרים אלא משלימים. יתכן שבפועל, SLMs יכולים לחזק את ה-LLMs וליצור פתרונות היברידיים, משולבים, שבהם ה-SLMs ממונים על הביצוע הספציפי והמדויק בעוד ה-LLMs מספקים את הקונטקסט, ההקשר הרחב יותר .
מהם SLMs ומה יתרונות מודלי השפה הקטנים הללו:
https://youtu.be/C4Qt9Hnp6vs
הסבר פשוט וקצר:
https://youtu.be/AlwWuSor_M4
למה לבחור SLM ולאילו מגבלות לשים לב אל מול ה-LLM?
https://youtu.be/Hg8f5bjtsWc
ומודל השפה הקטן של מיסטרל:
https://youtu.be/nCXTdcggwkM
מהם מודלי שפה גדולים, או LLM?
מודל שפה גדול (LLM), קיצור של Large Language Model, הוא ה"מוח" שמפעיל צ'אטבוט עוצמתי, כמו הצ'אטבוט ChatGPT, המייצר תוכן לבקשת המשתמשים ועושה זאת באמצעות מודל השפה הגדול GPT-4 ואחרים.
את התוכן מייצר הצ'אטבוט מדאטה עצום, כמות מידע אדירה שנשאבה מהאינטרנט ובאמצעותה אימנו את מודל השפה שמפעיל אותו. מודלי השפה GPT-3 ו-GPT-4, למשל, הם שמפעילים את הצ'אטבוט הכי מפורסם ChatGPT.
יש שאומרים שמודל השפה בעצם הוא לא יותר ממחולל מילים סטטיסטי. הם צודקים אבל גם טועים. כי מודל שפה יכול לחשב מצוין הסתברות של הופעת מילים שונות בכל משפט וכך לייצר משפטים חדשים, מילה אחר מילה, בשפה שבה הוא אומן על ידי המפתחים שלו. אבל זו דוגמה בלבד ואפילו קצת מטעה. כי סטטיסטיקה זה לא הכל וכנראה לא לגמרי המהות של העניין. המוח של מודל השפה, האופן שבו הוא בנוי והתובנות והביצועים שהוא יכול לנפק, הם משמעותיים הרבה יותר.
מודל כזה הוא תת-תחום של למידה עמוקה ומבוסס על רשת עצבית מלאכותית הבנויה בצורה דומה למוח האנושי. הרשת הזו היא בעלת כמות אדירה של פרמטרים, לרוב מיליארדים. הפרמטרים הללו הם ערכים מספריים שמסייעים לאלגוריתם ללמוד.
עוד ביטוי לגודלו הגדול של המודל הוא באימון שלו על מאות מיליוני מילים, בכמויות ענק של טקסט לא מתויג, בשיטת למידה שאינה מסתמכת רק על דוגמאות אנושיות, או מה שנקרא "למידה בפיקוח-עצמי".
#איך זה בדיוק עובד?
נניח ששאלתם שאלה, מודל השפה הגדול מניח את נוסח השאלה על שולחן הטיפולים שלו ובודק בדאטה שלו, במידע העצום שהוא אגר והמיר לקוד מתמטי (ראו אח"כ בתגית" טוקנים"), מה המילה שהכי סביר (מבחינת הסתברות) שתתחיל את התשובה. ואז הוא בודק מה המילה עם ההסתברות הכי גבוהה להופיע אחריה וכך הלאה. זה ייתן לו את התשובה הסבירה ביותר לשאלה.
למה הכי סבירה ולא הכי טובה? - כי הסתברות היא לעולם לא מושלמת וזו בדיוק הסיבה להזיות שנקבל לא פעם ממנועי בינה מלאכותית. אגב, אם תבקשו ממנו לבדוק את תשובתו, כל LLM ימצא ויפרט את שגיאותיו וגם יציע לתקן את המענה שנתן ובתיקון זה כבר יהיה הרבה יותר טוב.
ה-LLM משתמש בייצוג מתמטי של שפה טבעית באמצעות הסתברויות. כל מדען נתונים יאשר שהבסיס של מודלי שפה הוא היכולת שלהם לחשב הסתברות לכל משפט בשפה שבה הם אומנו ומהיכולת הזו נובע חלק משמעותי ביכולת שלהם לייצר משפטים חדשים, מילה אחר מילה.
#מודלי השפה הגדולים והבינה הג'נרטיבית
מודל השפה הגדול הוא בעצם הבסיס למהפכת הבינה הגנרטיבית שפרצה לחיינו בשלהי 2022-תחילת 23. מודלי השפה הגדולים הללו מסמנים קפיצת דרך של ממש ולמעשה הכניסו אותנו עמוק אל תוך העתיד.
הייתה זו IBM שפיתחה את אחד ממודלי השפה הראשונים. הוא נקרא ווטסון, על שם תומאס ווטסון, מייסד IBM. יש גרסה שאומרת שהוא קיבל את שמו משמו משם העוזר של שרלוק הולמס, ווטסון. מודל כזה, ממש כמו אותו עוזר, תמיד מסייע בחקר ובתשובות שונות, כיום של רבים ואצל שרלוק, לצרכי החקירות של הבלש הנודע.
מצוידים במודלים החדשים, הצ'אטבוטים המרשימים, כמו Claude ו-ChatGPT, מסרבים להיות לכם לווטסון. במקום זאת הם מפותחים כך שיהיו המוח, כלומר השרלוק שלכם, כשאתם וכמה זה אירוני, בתפקיד הווטסון או העוזר שלהם... אבל גם הלקוחות.
מודל שפה הוא שמאפשר לנו לבקש ממנו לסכם טקסטים, לענות על שאלות, לצייר או בעצם לייצר תמונות ו"צילומים", לחבר שירים, ליצור סרטונים או לכתוב קוד.
אז מודלי שפה גדולים אפשרו את קפיצת הדרך המדהימה של מהפכת ה-AI. אמנם הם רחוקים מלהיות מושלמים לחלוטין ועדיין פה ושם מקלקלים את ההתפעלות עם ההזיות המוכרות האלה שלהם, עובדות שגויות, מידע לא רלוונטי או מופרך ואפילו עלבונות נדירים. ומה שלא פחות מרגיז לעתים הוא הביטחון המלא שבו הם כותבים או מדברים אותן, שזה בדיוק מה שהופך את חשיפת ההזיות ובדיות הללו לכל כך קשה ומסוכנת...
כיום, המודלים הללו הולכים ומאפשרים צמיחה של עולם חדש, עולם סוכני ה-AI. הם ממוקדים בביצוע משימות ספציפיות, תגובה לסביבה ועוד תכונות מבטיחות. הכירו אותם בתגית "סוכני AI".
הנה מה שעושים המודלים, מנועי השפה הגדולים (מתורגם):
https://youtu.be/X-AWdfSFCHQ
כך פורצת מלחמת עולם ה-AI הראשונה:
https://youtu.be/nJjuYTpHQEE
מהו LLM?
https://youtu.be/iR2O2GPbB0E
המודל השולט בינואר 2025 - DeepSeek R1 הסיני:
https://youtu.be/hupQ97Or3jw
השוואת הצ'טבוטים הטובים, מנועי השפה הגדולים בסוף 2024 (עברית):
https://youtu.be/NanvGTQeO-g
כך פועל מודל השפה הגדול LLM:
https://youtu.be/iR2O2GPbB0E
כך בנויים ופועלים מודלי השפה הגדולים:
https://youtu.be/5sLYAQS9sWQ
יש להם גם חסרונות:
https://youtu.be/Gf_sgim24pI
הסבר מעמיק על מודלים גדולים של שפה ומה שהם הובילו (עברית):
https://youtu.be/-NIsUKUnxhA?long=yes
הפרמטרים והטוקנים באימון מודלים כאלו:
https://youtu.be/r17HV0TzAWw?long=yes
ובאופן סטטיסטי - כך פועל LLM:
https://youtu.be/LPZh9BOjkQs?long=yes
מהו מודל היגיון, או Reasoning Model?
מודל היגיון (Reasoning Model) הוא מודל שנועד לחקות את תהליך החשיבה האנושית ולהסיק מסקנות לוגיות על בסיס מידע נתון.
מודלי ריזונינג נוטים להיות כבדים יותר ולספק תובנות עמוקות, באמצעות הסקה רב-שלבית, מורכבת ומעמיקה. כמובן שהם משתמשים בטכניקות של בינה מלאכותית ולמידת מכונה כדי לנתח נתונים, לזהות דפוסים ולהסיק מסקנות מבוססות עובדות.
בדרך לתת תשובה מחלקים מודלי הגיון את פתרון הבעיה לשלבים, מתעכבים על התשובות, מהרהרים, בודקים, לעתים מתקנים את עצמם (בתכנות רואים את זה היטב) ומבצעים תהליכי ניתוח מורכבים.
בגדול - הם מבצעים חשיבה מתמשכת ומבוססת יותר מזו של מודלי שפה רגילים.
מודל הגיון שכזה מתאים מאוד לפתרון ברמת דוקטור (PhD) של בעיות מורכבות, בעיקר מתמטיות, מדעיות והנדסיות. הוא מושלם לחישובים מורכבים ודברים כמו מתמטיקה, פיזיקה, פיתוח קוד והסקת מסקנות.
ואגב, מודל ריזונינג דורש כוח מחשוב משמעותי מהרגיל, לפחות במקרה של מודל ChatGPT 4o1 של OpenAI וקצת פחות במודל הסיני המפתיע DeepSeek, שפותח לכאורה בגרושים ומראה תוצאות מרשימות בדרישות חומרה נמוכות בהרבה.
#החשיבה דרך הבעיה
מודל היגיון, הוא מודל מנומק, שמשתמש בהיגיון כדי "לחשוב דרך" הבעיה ולהיות מסוגל גם להראות את תהליך החשיבה שביצע, לפני שנותן את התוצאות. זאת בניגוד למודלים הרגילים שמבצעים אופטימיזציה סבירה, רק כדי שיוכלו לספק את התשובה המהירה ביותר (שזה מה שגם גורם לא פעם למודל שפה רגיל לתרום לנו בדרך את ה"הזיות", אותן Halucinations המוכרות לנו כל כך).
בקיצור, אם מודל שפה רגיל הוא הבחור הטקסטואלי שהוא אלוף על טקסטים ועונה מהר, מודל ההיגיון הוא הנערה המבריקה והריאלית, שיכולה לפצח בעיות מופשטות, מתמטיות, פיזיקליות ומדעיות בתחומים ומדעים מדויקים, בלי למצמץ ועם יכולת לנמק ולהסביר את הפתרון שאליו היא מגיעה, צעד אחר צעד.
מודל כזה מבצע לעתים קרובות "שרשרת מחשבה" (Chain of Thought) ולכן גם מכונה כך לפעמים. המודל חושב צעד אחר צעד, בצורה שמזכירה את האופן שבו אנו, בני האדם, עשויים לגשת לאתגר משמעותי יותר כמו פיתוח אפליקציה חדשה, תכנון חופשה או בניית בית.
#היתרון
משמעותו של מודל כזה היא ביכולת שלו לספק תשובות מדויקות ומושכלות לשאלות מורכבות, לפתור בעיות ולקבל החלטות מבוססות נתונים. לכן וכדי להצטיין בבעיות מסובכות יותר, מומלץ להזין אותו בכמה שיותר הקשר, קונטקסט (Context) לגבי הנושא והגישה לפתרון.
#במה הם יכולים לעזור לנו?
מודלים כאלו יכולים לנתח כמויות גדולות של נתונים במהירות ובדיוק, לזהות דפוסים ולהסיק מסקנות. הם יכולים לפתור בעיות מורכבות על ידי שימוש בלוגיקה ובאלגוריתמים מתקדמים.
ביכולתם גם לסייע בקבלת החלטות מבוססות נתונים, מה שיכול להיות מועיל בתחומים כמו רפואה, כלכלה וניהול. בנוסף, הם יכולים להסיק מסקנות לוגיות על בסיס הנתונים שנתונים להם, מה שיכול לסייע בתחזיות ובתכנון.
מודלי ההיגיון יכולים לחסוך זמן ומאמץ בביצוע משימות מורכבות, מה שמאפשר למשתמשים להתמקד בפעילויות אחרות. ביכולתם לספק תשובות מדויקות ומבוססות עובדות, מה שיכול להיות מועיל בתחומים כמו רפואה, משפטים והנדסה.
מודלים אלו מסייעים בקלות בקבלת החלטות מושכלות ומבוססות נתונים, מה שיכול להיות מועיל בחיי היומיום ובעבודה והם יכולים גם לסייע בפתרון בעיות מורכבות במהירות וביעילות, מה שיכול להיות מועיל בתחומים רבים.
ברפואה, מודלי היגיון יכולים לסייע באבחון מחלות ובמתן המלצות לטיפול על בסיס נתונים רפואיים.
בכלכלה, ניתן להסתייע בהם בניתוח שוק ההשקעות ובקבלת החלטות כלכליות מבוססות נתונים.
בחינוך, המודלים הללו יכולים לסייע בהוראה ובלמידה על ידי סיפוק הסברים מדויקים ומושכלים לשאלות מורכבות.
בניהול, הם מעולים הסיוע לניהול משאבים מוצלח ובקבלת החלטות ניהוליות מבוססות נתונים.
אז אם לסכם, מודל היגיון הוא כלי חזק שיכול לסייע במגוון רחב של תחומים ולשפר את איכות החיים של המשתמשים, על ידי סיפוק תשובות מדויקות ומבוססות עובדות. עם יכולותיו הוא מאפשר לנתח נתונים במהירות, לפתור בעיות מורכבות ולקבל החלטות מבוססות נתונים, מה שהופך אותו לאחד הכלים החיוניים ביותר בדור החדש של העידן הדיגיטלי מבוסס הבינה המלאכותית.
הנה מודל ההגיון הסיני Deepseek R1 שיודע לחשוב מראש, לתכנן, להשוות כמה תשובות אפשריות, לפרק את הבעיה לחלקים, לחזור אחורה ולחשוב מחדש על השאלה וכך לענות היטב על שאלות קשות, מורכבות ועד לא מזמן בלתי אפשריות למודל שפה:
https://youtu.be/-2k1rcRzsLA
דוגמה לבעיות פשוטות מהחיים שמודל מנומק יכול לפתור:
https://youtu.be/yQampjl6gPI
שניים כאלה:
https://youtu.be/rzMEieMXYFA
ו-DeepSeek R1 הוא מודל מנומק בקוד פתוח:
https://youtu.be/yT3KGbiA09Q
מה היתרון של כלי פיתוח קוד מבוססי AI?
מחשב מתכנת לבדו? - באופן מסוים כן. כי כלי קוד מבוססי בינה מלאכותית (AI-based code tools) מאפשרים לשלב את הרעיון או המומחיות האנושית עם היכולות של הבינה המלאכותית, כדי לפתח תוכנה ולעשות זאת ללא קידוד של המשתמש או באמצעות שיתוף פעולה בין המשתמש ל-AI.
קידוד מבוסס AI מתבסס על בינה מלאכותית ככותבת הקוד. כתיבת הקוד מתבססת על מודל שפה שאומן על נתוני דאטה עצומים ולמד קידוד.
המשתמש מאפיין את המוצר, אם זה אתר אינטרנט, תוכנה או אפליקציה לטלפון ומתאר אותו באמצעות פרומפט, הנחייה שהוא כותב לבינה היוצרת בלשון טבעית, כלומר שפה רגילה, שפת יום יום וללא צורך בידע בתכנות.
החיבור בין הרעיון והשכל האנושי ובין האינטליגנציה המלאכותית מאפשרים ניהול וביצוע משימות פיתוח, בשיתוף פעולה ועצמאות גם יחד.
באמצעות תכונות של AI מקודד ניתן לתאר ל-AI את המטרה, לקבל קוד, להנחות אותה כיצד להתקדם בפתרון בעיות או באגים בקוד ולהוביל ביחד לקוד איכותי ולמימוש הרעיון.
ה-AI המקודד מודע לפעולות המשתמש בזמן אמת ומציע יתרונות אדירים. הוא מסוגל לערוך קבצים מרובים במהירות אדירה, להציע פקודות, לזהות בעיות ולנפות באגים.
כלי הקוד המשובח "Windsurf AI", למשל, מפעיל סוכני AI מובנים, יחד עם מעין "טייסי משנה" מונעי בינה מלאכותית, שמטרתם להטעין את הקוד ולהפוך את הקידוד למהיר ואינטואיטיבי יותר.
בעצם, Windsurf ודומיו, דוגמת Cursor AI שהיה חלוץ הכלים הללו, הם מעין סביבת פיתוח (IDE) מהדור החדש, המשפרות את הפיתוח בעזרת אוטומציה חכמה ומציעות עריכת קוד בסביבה מרובת קבצים. וינדסרף עושה זאת, בין השאר, בעזרת כלי שנקרא Cascade ומצטיין במודעות עמוקה לקונטקסט, ההקשר הכל כך בסיסי ומרכזי בבינה המלאכותית היוצרת (Generative AI).
כלי נוסף וקל הרבה יותר הוא Websim AI, המאפשר לתאר אתר או אפליקציה, או סתם לתת שם דומיין מדומה, והיא יוצרת אותם. מכאן אפשר להנחות אותה בצעדים, איטרציות, מה שמאפשר לדייק אותה, לשפר, לשדרג ולבנות הלאה.
הנה כלי קוד מבוססי אינטליגנציה מלאכותית:
https://youtu.be/3cVJxRka4yM
AnyChat מצויד בדיפסיק וסמבה נובה לקידוד פשוט:
https://youtu.be/7BIVWQnAOLk?t=2m54s
השוואה של 3 מודלי שפה LLMs במהירות יצירת קוד למטלה זהה:
https://youtu.be/_JS-LkBrsk8
השוואת 5 כלי קוד מובילים והמנצח המפתיע:
https://youtu.be/WVhJSUtGbYM
יישום של תוכנה שפותחה כך, ללא כתיבת קוד:
https://youtu.be/lkom9ufvxD4
Websim.ai הוא כלי קוד קל מאוד וקסם ללא תכנות:
https://youtu.be/HCw4jCbLgMY
איך ChatGPT בניתוח קוד? (עברית)
https://youtu.be/Z46pqHFuKHs
רפליט הוא כלי קוד בינתי מתקדם יותר:
https://youtu.be/FrMy3Bq7TZA
לקודד אפשר גם בסמארטפון:
https://youtu.be/Cmq3TrS3ccU
מדריך מתחילים לתכנות עם Cursor AI:
https://youtu.be/ocMOZpuAMw4?long=yes
ומדריך לעבודה עם Windsurf:
https://youtu.be/4nCMdQadE08?long=yes

כלי יצירת וידאו בעזרת בינה מלאכותית גנרטיבית מתפתחים במהירות אדירה. עד לא מזמן זו הייתה המהפכה הבאה של הבינה המלאכותית, אבל מהירות הפיתוח של הטכנולוגיה הזו, כמו כל תחום הבינה הגנרטיבית, היא בלתי נתפסת ולכן היא כבר כאן ולא עוצרת לרגע.
וכך, נוסקים מה שהיו שנה קודם סרטונים של 4-5 שניות באיכות תמונה בסיסית עד נמוכה והבנה בינונית למדי של הפרומפטים (ההנחיות הטקסטואליות שבהן מתאר המשתמש את התוצאה המבוקשת). בתוך שנה הם הפכו לסרטונים מעולים, באיכות תמונה מעולה, היצמדות להנחיות הפרומפט ומאפשרים לבקש זוויות צילום, סוגי שוטים, סוג או ז'אנר הסרט ועוד.
וגם קהילת הקוד הפתוח (ראו בתגית "קוד פתוח") לא טומנת ידה בצלחת. לעומת מודלים מסחריים סגורים ויקרים למשתמש, המודלים שלהם מאפשרים יצירת סרטונים בארכיטקטורה עם שקיפות וחדשנות וללא עלות, תוך אימוץ של טכנולוגיות AI מהחדשניות ביותר, גם בחינם להורדה והרצה על המחשב המשתמש וגם אונליין, בהגבלות בשל העלות שעולה לשתפן כך.
מדהים לחשוב שמה שבעבר צולם באלפי דולרים מינימום לשניה של סרט, נוצר עכשיו בכמה פקודות מקלדת, שמייצרות סרטונים שווי ערך להפקה מורכבת, יקרה, עתירת מקצוענות וכוח אדם, כשלא פעם ביצועי אפקטים מיוחדים ו-CGI, יקרים ומורכבים לצילום, מוחלפים במחי פקודת מקלדת פשוטה ודמיון מפותח של היוצרים.
היום הבינה המלאכותית יוצרת סרטונים מעולים וברמה מטורפת, אפילו על בסיס של תמונות סטילס (תמונות רגילות), שהועלו אליה ונוספה להם הנחייה שאומרת מה "עושים" האובייקטים שבתמונה כשהם "משתתפים בצילומים".
וזה בדיוק מה שמדאיג היום רבים בתעשיית הקולנוע. קשה להימלט מהמחשבה כמה ואילו מקצועות עומדים להיעלם בקרוב מהעולם, מהמסך, הגדול או הקטן. בצל הקדמה הזו עלולים כמה א.נשים לאבד את פרנסתם. החלפתם הצפויה בבינה מלאכותית תהיה כי היא זולה, יעילה, צייתנית וכזו שאף פעם לא חולה, לא עצובה ולא מאחרת, כי הילד שלה מרגיש לא טוב בבית...
אז לצד זה שהבינה המלאכותית מרגשת, תורמת ליצירתיות וגלומות בה אינספור אפשרויות בלתי נגמרות, היא טומנת בחובה גם איומים וסכנות לאנושות ולנו בני האדם. תעשיית הקולנוע כולה עלולה להיות מוחלפת בהדרגה במיליוני רובוטים שקוראים להם AI ואין להם אפילו גוף לחבוט בו. רק אינטליגנציה מלאכותית, שלא מרחמת ולא חומלת, כי היא עושה רק מה שאומרים לה. במקלדת, כן?
הפתרון, כי חייבים לדבר אופטימית שוטפת, הוא ללמוד את הכלים החדשים הללו. יידע כל מקצוען קולנוע שבמקום להיות מוחלף ב-AI, עדיף לדעת AI ולהשתלב בעולם החדש הזה.
הנה Google Veo 2 המוביל:
https://youtu.be/VNWLHAnRc0o
הכלי האינטגרטיבי שעושה תהליך שלם מפרומפט קטן:
https://youtu.be/Aw1TQwkCLQs
מודל וידאו בינתי ישראלי (עברית):
https://youtu.be/CkpLiPWLcHo
אפשרויות הווידאו AI שהולכות ומתפתחות במהירות - הנה Neurawik:
https://youtu.be/1HVkzZiv82Q
Sora רצה להחליף את עשיית הסרטים הרגילה (עברית)
https://youtu.be/kx3H1jFHncY
דברים שרק AI יכול לעשות (ללא מילים):
https://youtu.be/f-Vbm-iQ_Xw
הדרכה ל-Image to Video שהופכת תמונה לסרטון וידאו (עברית):
https://youtu.be/mR3rN8vphC8
קליפ AI של שיר של הביטלס:
https://youtu.be/Z9MZdNrGbM4
כך יוצרים מתמונות בעזרת פרומפט וידאו AI בקלות עם Minimax (עברית):
https://youtu.be/F-gl4E5yo60
כך יוצרים לייב פורטרייט - דיוקן עם מחוות שלכם:
https://youtu.be/kM3KSrPrh9c
קליפ מתמונה בשיטה של Image to video:
https://youtu.be/yCczY9PNeao
קדימון AI מדומה לסרט מד"ב שאולי יצולם:
https://youtu.be/oAIrJP4n5sQ
כך מחליפים פנים לדמויות וידאו ב-Faceswap:
https://youtu.be/vVs0DZ8VyGQ
מינימקס המטורף בווידאו AI:
https://youtu.be/4QXCV_TYKZc?long=yes
הנה Dream Machine של לומה:
https://youtu.be/N_hlfwWtgPQ?long=yes
על סקיצה של ג'ון לנון שהושלמה 40 שנה אחרי מותו עם קליפ משולב דמויות AI:
https://youtu.be/APJAQoSCwuA?long=yes
Magic Hour AI - כלי שיוצר סרטונים עד 60 שניות, שזה הכי הרבה:
https://youtu.be/eSpuvmRhcPg?long=yes
KREA - מודל ליצירת סרטונים AI:
https://youtu.be/OBewafac0Xs?long=yes
MINIMAX - עוד מודל וידאו מדהים מסין:
https://youtu.be/7JZLLxV1AGc?long=yes
כלי וידאו שמייצר ישר סרטון רב-סצנות:
https://youtu.be/BCCUNiToo94?long=yes
כלי הווידאו המומלצים לתחילת 2025:
https://youtu.be/K04zRJ8Vl_s?long=yes
וכך מייצרים סרטי וידאו ארוכים ב-Canva תחילת 2025:
https://youtu.be/tWmVbn4rUd0?long=yes

אנו בעידן הצ'אט בוט המדהים של Open AI שנקרא ChatGPT. ה-GPT הוא קיצור בראשי תיבות של Generative Pre-trained Transformer. הצ'ט בוט הזה מוביל שורה של פיתוחים דומים ולמעשה הוליד, כמעט יש מאין, עולם חדש של טכנולוגיות. יצירתיות, חדשניות ומדהימות.
העניין הזה כבר הוליד פועל חדש בעברית, כשהמערכות הללו מתחילות לג'נרט (מלשון generate), כלומר לייצר תוכן באופן אוטומטי על ידי מחשבים ומודלי שפה תבוניים, דוגמת ChatGPT, Claude, Gemini ודומיהם.
מודלי השפה הללו מתקדמים במהירות והמירוץ לפתחם ימשיך. במקביל לעבודה המדהימה שעושים המפתחים של O.AI יוצאים כל הזמן כלים מתחרים, כולל של ענקיות כמו גוגל, פייסבוק ואמזון, העובדות על מוצרים דומים.
ביחס לכל מוצר AI שהיה נגיש לציבור בעבר, ChatGPT ומקביליו עושים דברים מדהימים, מהפכניים וכמעט בלתי נתפשים במהירות שהם מבוצעים.
אז נכון שיש לצ'אט הזה ולעמיתיו עוד דרך עד שנוכל לסמוך עליו ועל הידע והמידע שהיא מציע לנו בכל התחומים, אבל בתחומים מסוימים הם כבר כאן ועם יכולות בינה מלאכותית שהן די מהפכניות. בעניינים אחרים המרוץ לבשלות ככל הנראה ימשיך והם יגיעו די מהר...
קשה אולי להאמין שהמקצועות שאנו מכירים ייעלמו לגמרי. וגם אלו שאכן ייעלמו - זה לא יקרה מיד, אבל זה תהליך שיימשך, תהליך בו מקצועות עבודה יהפכו יותר ויותר למקצועות של פיקוח על הבינה המלאכותית שעושה אותה.
כשהאדם מפקח על עבודת המכונה, הוא יצטרך להיות בתחום כדי להיכנס לפעולה כשהמכונה נתקלת בבעיה שהיא לא יודעת לפתור, לא מתפקדת, מתקלקלת וכדומה.
אז אילו סוגי מקצועות ייפגעו מהבינה? - ההערכה היא שבעיקר מדובר בעבודות הקשורות בשפה. כל מי שמשתמשים בעבודה שלהם בשפה, באופן ישיר ומשמעותי ולא הכרח ביכולות אחרות, פיזיות, ליטרלי שריריות, יכולים לשער שהבינה המלאכותית תוכל לבצע במעלה ההתפתחות שלה את מלאכתם.
עיתונאים, מידענים, תחקירנים, אנשי שיווק, פרסום ויוצרי תוכן, מתכנתים ואפילו מוסיקאים - אצל כולם השפה היא כלי מרכזי בו הם עושים שימוש בליבת שיטת העבודה. אז זה לא שלא יהיו עיתונאי-על, או מוסיקאים אנושיים - הם פשוט יהיו מעטים ומעולים. השאר ימצאו את עצמם מוקפים באנשים שאינם אנשי מקצוע, אך למדו לנצל כלי AI ולייצר תוצרים שייתחרו בשלהם.
גם אנשי מדיה צריכים לדעת שהמקצועות שלהם יעברו שינויים משמעותיים ולמעשה כבר עוברים. עורכי סרטים, צלמים, יוצרי סרטים, מקליטים, עובדי אולפנים, טכנאי סאונד, עורכי אפקטים ומעצבים גרפיים - המקצועות הללו כבר עוברים שינויים וכדאי שיתעדכנו בהם היטב כי כך יוכלו להשתנות עם התחום ולהתבגר לחידושי ה-AI שייכנסו אליו, למצוינות והובלה בו.
הנה השפעת הבינה המלאכותית על העולם האנושי שלנו (מתורגם):
https://youtu.be/RzkD_rTEBYs
יחליף את המורים? - למה בחינוך מודאגים ממודל השפה החדש?
https://youtu.be/Fn8jDanbf0c
האם הג'י פי טי יחליף למשל את הסופרים ויכתוב ספרים, כמו שהוא מייצר היום ספרי ילדים (עברית):
https://youtu.be/sDjFRAP0Szg
ומה הוא עושה לתלמידים והמורים (עברית):
https://youtu.be/vmmUiyeGNB8?long=yes

בפשטות כן. אולי לא בכולנו ולא בכל אנשי המקצוע אבל הבינה המלאכותית תוכל לגרום לקשיים עבור רבים - בעבודה ובעולם התעסוקה. באופן מסוים, היא עלולה להביא את העולם אפילו למשבר כלכלי של ממש.
אלא אם... חכו עוד מעט.
בשלהי שנת 2022 כל העולם דיבר לפתע על הצ'אט בוט המדהים של Open AI שנקרא ChatGPT. ה-GPT הוא קיצור בראשי תיבות של Generative Pre-trained Transformer.
מודל השפה שעליו התבססו המפתחים בחברת Open AI נקרא GPT-3, אבל גרסה 4 ואלו שאחריה לא יאחרו והמירוץ לפתח אותו ומודלים רבים אחרים יימשך. כי במקביל לעבודה המדהימה שעושים מפתחי Open AI פותחו די מהר כלים מתחרים.
ביחס לכל מוצר AI שהיה נגיש לציבור בעבר, ChatGPT ומקביליו עושים דברים מדהימים, מהפכניים וכמעט בלתי נתפשים במהירות שהם מבוצעים.
אז נכון שיש לצ'אט הזה ולעמיתיו עוד דרך עד שנוכל לסמוך בעיניים עצומות על הידע והמידע שהם מציעים לנו, אבל בתחומים מסוימים הם כבר כאן ועם יכולות בינה מלאכותית שהן די מהפכניות.
#אז הלך עלינו?
הבינה המלאכותית שמפגינים ChatGPT ושאר כלי ה-GPT יכולה לעשות בהצטיינות עבודות של איסוף ומיון של מידע או ידע (שני דברים שונים) ואחרי זה גם כתיבה ויצירה.
כי ה-AI ברמה הגבוהה הזו יודעת לחקות אמנות, לצייר, לתקן תמונות, למצוא תשובות לשאלות, להכין שיעורי בית, להמציא מתכונים, לכתוב עבודה לבית הספר, לחבר מוסיקה, לערוך וידאו, לכתוב קוד ולתכנת, לחבר טקסטים, לנסח מכתבים ומאמרים ועוד.
אבל היא יודעת בעיקר ליצור דברים דומים למה שכבר נעשה. אמנם ברמה גבוהה, אפילו מאוד, אבל על סמך חשיבה מקצועית וסטנדרטית של אנשי מקצוע בתחומים השונים.
#מה היא לא?
בתחום היצירה הבינה המלאכותית לא תשתווה לאנשים יצירתיים, מקוריים, שיסטו ממה שכולם יודעים לעשות ויחוללו את הפלאים שלהם. היא תדע לעשות טוב יותר ומהר יותר את מה שאנשי מקצוע טובים עושים, אבל היא תתקשה לצאת מהטוב אל המצוין, הגאוני, המבריק.
לכן היא לא תפגע באנשי מקצוע מעולים ומקוריים, בבני אדם יצירתיים, עם חשיבה מיוחדת ולא שבלונית, עם יכולת המצאה.
#אז מה ההזדמנות?
וזו רבותי ההזדמנות שלכם. משתלם היום לפתח את היצירתיות והחשיבה המקורית, ללכת על להיות קצת יותר אמן ממידען, להיות מעט פחות מהנדס "רגיל" ויותר ממציא ומי שמוצא פתרונות, כולל באינטרנט אבל לא רק - כי פתרונות לתחום אחד כבר מיושמים לא פעם בתחום אחר.
נמשיך? - להיות יותר סופר מאשר עיתונאי, יותר מלחין מאשר רק נגן ויותר מעצב מאשר גרפיקאי ביצועיסט.
#יכולות?
לשם כך דרושות יכולות מגוונות שמערכת החינוך והעולם המקצועי לא מפתחים יותר מדי. יצירתיות, ידע כללי, סקרנות וחוצפה הם חלק מהיכולות הללו.
יצירתיות - הציצו אצלנו בתגית "יצירתיות" והבינו את הצד הזה ואיך לפתח אותו. התחלה מעולה לרכישת ידע כללי תהיה באאוריקה, בהאזנה לפודקסטים, צפייה בסרטי דוקו וסרטונים של ידע ביוטיוב ועיון בבלוגים של ידע, באזור המסקרן והלא משעמם של האינטרנט ובתנאי שהוא מתויג ולא חד-ממדי.
סקרנות - גם היא תכונה שנולדתם איתה וכדאי לשמר, במיוחד כשמסביבכם יעשה כמעט כל גוף חינוכי ניסיון להשבית אותה, לטובת חיפוש תשובות סטנדרטיות ושתהיו ותנהגו "כמו כולם". כל דבר שתלמדו לבד ותחקרו אין ספק שתזכרו טוב יותר ויום אחד עשוי לשרת אתכם, לעומת שיעורי בית שכמעט אף פעם לא.
היזהרו מתופעה שבעולם החינוך מוכרת כ"Yessing". חיפוש חשובות שהמורה יאהב, תשובות לשאלות שניתן למצוא בקלות ואפילו בלי חשיבה. אז מה הטעם בהן? לא עדיף שישאלו אותנו בבית הספר מעט פחות שאלות, אבל כאלה שיעודדו אותנו להשתמש בשתי האונות או בכל אזורי המוח? חקרו כאן את תגית "סקרנות".
חוצפה - על זה לא צריך להרחיב אבל נדגיש שמדובר בחוצפה מקצועית ולא התנהגותית. להעז. לא לומר לעצמכם שאינכם יודעים מספיק כדי לפתח או להמציא, לחבר או לצייר. פשוט ללכת על זה, לחקור איך, לאסוף דרכים, לחפש שיטות וטכניקות לאמנות וליצירה ביד.
נסו להמציא שיטות חדשות לעשות דברים וחקרו אותן, לנסות לעבוד איתן. חפשו ידע ושאלו באינטרנט עד שתקבלו תשובות. כתבו דברים כי לא פעם רק כשכותבים מבינים. זה בסדר לגנוב ולהעתיק ואז לפרק, ללמוד, להרכיב מחדש, לעבד ולהבין כיצד לשלוט במיומנויות הכרחיות. אם אין זמן אז קומו שעתיים קודם או לכו לישון מאוחר, גם אם תהיו קצת עייפים בבית ספר. גם ככה, אתם יודעים...
כישלונות - עוד דבר שיעזור ויהיה הכרחי הוא היכולת שלא להיבהל מכשלון ואפילו ללמוד לחבק אותו. חינכו אותנו שההצלחה היא המטרה, בעוד שמה שמתקשר אצל רובנו עם כישלון הוא כמעט תמיד אכזבה ופנים נפולות. אז כדאי שתדעו שכישלונות הם חלק בלתי נפרד מההצלחה.
היכולת שלא להרפות וליפול ברוח מהכשלון היא שמבדילה בין בני אדם. היא שמביאה נשים ואנשים בסופו של דבר להצלחה. אדיסון, מגדולי הממציאים, אמר על זה פעם שההמצאות הגדולות שלו היו כולן כשהוא לא הצליח להיכשל...
כדאי להאמין לו. אמר את זה אדם שחתום על מאות פטנטים והמצאות ששינו את העולם. בשום מקום לא נכתב כמה פעמים הוא נכשל בכל תהליך, עד שהוא הצליח בו. תמיד מספרים רק על ההצלחות אז אנחנו לא יודעים על הקשיים והנפילות, על התסכול וההפסדים.
אבל עכשיו אתם יודעים. לכן אם אומרים לך שזה גרוע? -המשיכי. צעקו לך בוז? - המשך. כמעט כל מצליחן ופורץ דרך שמע את זה בהתחלה. על בוב דילן אמרו שיש לו קול של צפרדע, המטוסים של האחים רייט צללו בזה אחר זה, הבכורה של האופרה הכי פופולרית בהיסטוריה "כרמן" הסתיימה בקריאות בוז וירקות שהושלכו על הבמה. את הסרט "בלייד ראנר" קטלו כשהוא עלה לאקרנים ואת סוקרטס הוציאו להורג על השחתת הנוער...
אז אמרו... מה הם יודעים? מי מהמבקרים והפוסלים את היזמת שאת הצליח לפני זה?
לא להרפות! אין הבטחות, אבל עקביות חשובה לא פחות מחשיבה, יצירתיות, סקרנות ומקוריות. בלעדיה כמעט ואין סיכוי להגיע למימוש כי לא מגיעים בכלל.
#אתם הורים?
אם אתם מגדלים היום את ילדיכם יש לכם אחריות ואפשרויות. תנו להם כלים, יכולות, הרימו ותפתחו את הכשרונות המלבלבים שלהם. אל תכבו אותם עם הרגיל ועם מה שאתם למדתם או רציתם להיות. בעולם שלהם אתם תהיו מבוגרים מדי או, וסליחה שאנחנו מזכירים, אולי כבר לא תהיו.
תנו להם לחקור מה ירצו לעשות. חישפו אותם לתחומים, לעולמות ולתופעות. תנו להם דוגמה אישית, קראו ספרים, אל תעשנו, אל תהיו בטטות - צאו לעשות ספורט ואם כבר אז גם אכלו נכון. צאו איתם לטבע, לטיול או הליכה, הביטו יחד בפרחים, נסו לזהות אותם ולחקור עליהם.
קראו ספר בעצמכם והביאו את הספריה של הבית לסלון, אל מול עיניהם. כבו מדי פעם את הטלוויזיה ונהלו שיחות ביניכם אל מול עיניהם ואיתם. שתפו אותם, שאלו על מה מעניין אותם ומה ירצו להיות, מה החלומות שלהם, איפה הם רואים את עצמם בגיל 25.
התעניינו בהם באמת. מה מסקרן אותם. מה מרגש ומלהיב בשבילם. התעניינו איזה חוג הכי מעניין אותם ואם אין מספיק כסף בקשו בשקט הנחה כדי שלא לבייש אותם.
נסו להשיג להם דברים שיאפשרו להם לפתח את תחומי העניין, לקנות יד שנייה, לחנך אותם שחדש זה ממש סתם ואם ראו משהו זרוק שלא יתביישו לקחת, לפרק ולהרכיב ממנו חללית. צפו איתם בתכניות מדע או בסרטי דוקו, הראו להם סרטים קלאסיים, למדו אותם ששחור לבן הוא לא פחות צבעוני ושמינימליזם הוא לא פעם הכי עשיר שיש (Less is more).
אה, ובגיל צעיר ספרו להם סיפור לפני השינה. זה כל כך חשוב שאתם לא מעלים על הדעת. הרבה יותר מ-GPT, מציור בינתי וממדעי המחשב באוניברסיטה. היו הורים, לא רק אנשי קריירה.
הנה ChatGPT ולמה בחינוך מודאגים ממנו:
https://youtu.be/Fn8jDanbf0c
בעלי מקצוע מפחדים על העבודה שלהם (עברית):
https://youtu.be/0AGYOv0sGHg
תראו למשל איך הוא מייצר קליפים (עברית):
https://youtu.be/8CmXtj5gW2I
במבט לעתיד, השינוי שה-AI ייצר הוא אדיר ותלוי גם בנו (מתורגם):
https://youtu.be/RzkD_rTEBYs
איך הצ'אט GPT בניתוח קוד? (עברית)
https://youtu.be/Z46pqHFuKHs
בחיוך - מה הכלי היחידי שיש לנו כבני אדם כדי לזהות אם הכותב או הדובר הוא בוט כמו ChatGPT? (עברית)
https://youtu.be/nes_xZjZweY
מה קורה כששואלים את הבינה של גוגל על זה (עברית):
https://youtu.be/oh4Bq8ifgK4?long=yes
זה יקרה בשלבים ולא מיד:
https://youtu.be/iNKFOCki42I?long=yes
וסרטון שמדגים את זה יפה:
https://youtu.be/5rqVB44kIv0?long=yes

אחת התופעות שמתחילות להתגלות בשנים האחרונות, מאז הפריצה של הבינה המלאכותית הגנרטיבית, היא של טפשת שגורמת הבינה הגנרטיבית למידע ולתוכן באינטרנט.
ברור שהשימוש הכל כך קל ב-Generative AI מקל על המשתמשים, אבל ידוע לכל שיש לבדוק את המידע שהיא יוצרת לפני שמחזירים אותו לציבור כמידע שיצרו בני אדם. מסתבר שרבים לא מבינים את החולשות והפגמים שעדיין מלאים בהם מודלי השפה, אותם מודלים גדולים (LLMs) שעושים היום את הידע. אם אלה תכנים שהתקבלו מקלוד או ChatGPT, רכיבי AI שנועדו לייצר קוד בתכנות, וידאו או תמונות גנרטיביות שיוצרים מנועים שונים ועוד.
התופעה הזו כבר פוגעת באיכות המידע באינטרנט, לפי בדיקות אובייקטיביות שעורכים באופן תקופתי לאיכות הרשת. מסתבר שלא זו בלבד שבני אדם מסתמכים על מידע שחלקו לא מדויק בלשון המעטה, אלא שהקרולרים עצמם, אותן תוכנות שאוספות את המידע מהרשת לצורך אימון, הזנת ועדכון מודלי השפה הגדולים - מסתבר שהם עצמם מסתמכים על המידע הגרוע הזה. ובדיוק כך, הוא חוזר למודל השפה ונכנס לתוכן שמקוטלג לטוקנים (Tokens) ובחזרה לדאטה שעליו הם מסתמכים. התוצאה היא שיותר ויותר מידע לא בדוק ולא אחראי, שהגיע מלכתחילה לרשת ממודלי שפה לא בשלים מספיק, חוזר ומפרה את המודלים הבוגרים, שאמורים לקבל מידע אנושי ואיכותי ולא תמיד יודעים לאתר את השגיאות שבו.
גם בעולם העסקים והארגונים יש כבר החמרה. הירידה באיכות התוכן שבאינטרנט נובעת מהשימוש הגובר והולך בחומר בינוני, שהגיע מהבינה המלאכותית הגנרטיבית, אך לא בוגרת, של הדור הראשון. כבר עם ההשקה של ChatGPT ב-2022, גילו מנהלים את הצ'טבוט שמאפשר להם ליצור חומרים באמצעות בינה מלאכותית יוצרת (generative AI) וחיפשו דרכים להשתמש בהם, במקום בעבודה של עובדים או חברות מיקור החוץ שבהם השתמשו בעבר. מעט מאותם מאמצים התגלו כיעילים ומרביתם נשארו בפוטנציאל יותר מאשר החליפו עובדים.
אך בתחום התכנות זה כן קרה. מסתבר שמודלים כמו CoPilot, Claude ואחרים מייצרים קוד במהירות ומחליפים את הג'וניורים, המתכנתים הצעירים בתעשייה. לפי סקרים שמתפרסמים בעולם נראה שקצב האימוץ של המנועים הללו הוא גבוה, במיוחד ביחס לזמן הקצר שבו הם פועלים. אלא שבסוף 2024 מתחיל להסתבר שכ-40% מהמתכנתים בעולם משתמשים בכלים כאלה ומשגרים קוד שלפחות בחלקו הוא פחות מוצלח. קוד זה חוזר ו"נלמד" על ידי המודלים ומוריד את איכות התכנות שלהם באופן מתמשך, שעלול אף להחמיר.
צ'אט בוט

צ'אטבוט (Chatbot) הוא סוג של סייען חכם וממוחשב, שניתן לשוחח איתו בהתכתבות צ'אט, או במקרה של צ'אטבוט מתקדם יותר גם שיחה מבוססת דיבור.
כמובן שהצ'אטבוט הוא מערכת מבוססת AI (בינה מלאכותית, או אינטליגנציה מלאכותית) שמייצרת שיחה מלאכותית עם המשתמש - מבלי שבצד השני נמצא אדם אמיתי.
בעשור השני של המאה ה-21 הצ'אטבוט הלך ותפס את מקומו ברשת ובאפליקציות שונות והפך לדרך חדשה לחלוטין להשתמש באינטרנט. לקוחות מצאו את עצמם מנהלים התכתבות בצ'אט או שיחה אוטומטיות עם בוט, שנתן מענה מותאם אישית ושיפר את עצמו עם הזמן.
הצ'טבוט הבטיח לספק שירות לאורך כל שעות היממה, 24/7. הוא סימן הפחתה של המון מהעומס של שירות הלקוחות האנושי, חסך זמן למתעניינים וללקוחות שביקשו שירות וחסך לעסקים הרבה כסף.
התגלה שבוט AI ממוקד ואיכותי מסוגל להציע תגובות מהירות ומדויקות, מה שהוביל לשיפור ניכר בחוויית הלקוח ולעלייה בשביעות הרצון, אף שהיו לקוחות שהתעקשו לשוחח עם בן אדם, שהיה עמוס עכשיו פחות ולכן גם זמין להם הרבה יותר.
היתרונות של הצ'טבוט בטיפול אישי במשתמש ובלקוח היו עצומים. שולבו בו טכנולוגיות פרסונליזציה מתקדמות שהלכו והתפתחו, תוך גיוס הבינה המלאכותית לצרכי השיווק, המכירות והתמיכה.
רבים חזו שצ'אטבוטים עשויים להחליף חלק ניכר מהשימוש באתרי שירותים שונים ולייתר אותם בעתיד, מה שהתממש אבל חלקית.
בזמנו החליטה פייסבוק להשתמש בצ'אטבוטים בתוך שירות המסרים שלה מסנג'ר. היא אפשרה למפתחים חיצוניים לפתח צ'אטבוטים שיתנו שירותים ומידע מאתרים אחרים. ההכרזה על פלטפורמת הצ'אט בוט של פייסבוק מסנג'ר קדמה את רעיון הצ'אטבוטים המקוונים באופן משמעותי, במיוחד למשתמש הנייד בסמארטפונים ושעונים חכמים, אם כי הזינוק הטרנדי שנוצר עם ההשקה הלך ונרגע עם הזמן.
ההבשלה של אותם צ'אטבוטים באה בעשור הבא דווקא. זה קרה עם הגעתו של ChatGPT, מודל השפה הגדול הראשון (LLM), שאחריו הגיעו נוספים, כמו Gemini או Claude. מודל השפה הזה הוא בעיקרון מנוע בינה מלאכותית גדול ורחב-אופקים, המצויד ביכולת להבין שפה טבעית, אנושית, ויכול לעשות המון דברים, כלומר להתמודד עם מגוון ענקי של משימות ושהיכולות שלו הולכות וגדלות מיום ליום. ראו בתגית "LLM".
ממודלי השפה הגדולים התפתחו גם מנועי היצירה של הבינה הג'נרטיבית (Generative AI), המייצרים תמונות, שירים, וידאו ועוד. הכירו בתגית "GenAI".
אחריו נולדו סוכני ה-AI, צ'אטבוטים שממלאים משימות עבורך, על ידי שילוב בין היכולת הבינתית של מודל השפה הגדול כמו ChatGPT, עם היכולת של רכיב תוכנה שיכול לפעול באופן עצמאי וממוקד, למילוי של משימה ספציפית עבורנו, כמו לתכנן טיול, לקנות מוצרים אונליין, לטפל בדואר האלקטרוני שלנו וכדומה.
אותם סוכני AI הם רכיבי תוכנה אוטונומיים, יישומים מבוססי בינה מלאכותית, המסוגלים לתפוס את סביבתם, לקבל החלטות ולפעול לביצוע או השגת מטרות ממוקדות בשירות המשתמש. הכירו אותם בתגית "סוכני AI".
כלומר, אם הצ'טבוט של העשור שהחל ב-2010 היה עובד חרוץ אך לא חכם מדי, הצ'טבוט הבינתי של מודל השפה הגדול בעשור שאחריו רכש השכלה ופיתח את יכולותיו האינטליגנטיות באופן שהפך אותו למומחה ואז מגיע הסוכן הבינתי, AI agent והוא כבר עובד שמתמחה במשימה מסוימת ועושה אותה בצורה מיומנת וחרוצה.
עסקה טובה לרובנו.
פעילות נחמדה
============
בקישורים שלמטה יש לינק לצ'ט בוט נהדר. נסו לשוחח איתה (באנגלית) ולהכיר קצת את חוויית השיחה עם צ'ט בוט אופייני.
הנה עולם הצ'אטבוט:
http://youtu.be/iE9LtfQAYYU
עוד על השימוש בצ'אטבוטים ברשת:
http://youtu.be/G8z--x5tFOI
ההכרזה על הצ'אט בוט במסנג'ר של פייסבוק:
http://youtu.be/EOYnFUJyOlQ
ומנגד - כשהושק הצ'אטבוט של מיקרוסופט הוא "הסתבך" עם ביטויי גזענות קשים:
http://youtu.be/LA49GBcbudg

מודל שפה קטן (Small Language Model), ובקיצור SLM, הוא מודל מתמחה או מומחה, דגם קטן יותר ומזוקק, מה שהופך אותו להבטחה גדולה וממשית לצרכים עסקיים, בעולם האמיתי.
מודלים קטנים של שפה, או כמו שתרגום מכונה מכנה בטעות "מודלים של שפות קטנות", מאפשרים היום אימון בינה מלאכותית על ידע ספציפי לתחומים שונים ובכך להתאימם לתעשיות ספציפיות, משימות וזרימות עבודה תפעוליות.
SLM הוא קצת כמו סוס חזק ומהיר שיכול לבצע משימות ממוקדות, לעומת כרכרות LLM עמוסות, כבדות ולכן גם מוגבלות בתמרון.
שוב ושוב נשאלת השאלה האם יכולים מודלי שפה קטנים (SLMs) לנצח את ה-ChatGPTים או ה-Claudeים למיניהם, את האחים הגדולים והוותיקים, המצוידים, מאומנים ועתירי המשאבים מעולם ה-LLMs?
או במספרים - האם מודל של מיליארד בודד של פרמטרים (1B) יכול לגבור על היכולות של מודל עם 405B פרמטרים, יותר מפי 400 ממנו?
אז כן. בניגוד למודל שפה גדול של עולם ה-LLMs, שמעבד כמויות אדירות של ידע כללי, המודל הקטן מעולם ה-SLMs בנוי במחשבה על דיוק ויעילות. עלות הפעלתו היא נמוכה משמעותית, הוא דורש פחות כוח חישוב ובנוי כדי לספק תובנות רלוונטיות יותר לעסק מאשר מקביליו הגדולים והכלליים.
בעולם המודלים הגדולים של שפה כבר הסתבר שאופטימיזציה של החישובים ב-SLMs כאלה יכולה אכן לעלות את היכולות של הקטנים הללו על אלו של דגמים גדולים יותר, שמנסים ומצליחים להיות חכמים מכולם ויודעי-כל, אבל תפעולם יקר ומסורבל יותר והם לא יעמדו ביכולות ההתמחות של מודל קטן שלא מביט לצדדים ומרוכז רק במשימתו.
מחקרים שבחנו את היעילות של שיטה ששמה Compute-Optimal TTS, למשל, הראו ששיפור הביצועים של מודלים קטנים מאפשר לעלות בהם את הביצועים על אלו של דגמים גדולים יותר, במשימות מתמטיות כמו MATH-500 ו-AIME24 ובשיפור יכולות החשיבה של LLM.
#ביצועים, התמחות ואבטחת נתונים
לא מעט חברות וארגונים מבינים שהשאלה היא לא על איזה מודל בינה מלאכותית אנשים קופצים, אלא איזה מודל יספק לחברה או לארגון ערך עסקי אמיתי. SLMs מאפשרים לעסקים לפרוס AI ישירות על מחשבים ניידים, רובוטים וטלפונים ניידים ולהבטיח בכך גם שהנתונים, הדאטה שלהם, יישארו מוגנים.
דגמי SLM, שמותאמים להצטיין בתחומים ספציפיים - פיתוח תוכנה, רפואה, פיננסים וכדומה, יספקו תוצאות מדויקות ואמינות יותר, המותאמות לצרכי הארגון הייחודיים וליכולותיו.
ה-SLMs המזוקקים והקטנים יותר מצליחים לשמור על יכולות חשיבה חזקות וממוקדות תחום, ביחד עם יעילות המאפשרת להם לפעול באופן מקומי, מבלי להסתמך על מחשוב ענן.
#סוכני AI
אם SLMs מצוינים עבור עסקים הרוצים לייצר משימות אוטומציה שלא נזקקות לכל הרעש והצלצולים שמציע ה-LLM, אז מה עם סוכני בינה משויפים?
אז ברור שגם מפתחים של סוכני AI צריכים דגמים קלים, מהירים ומתמחים מאוד, המאומנים על ידע מעמיק וספציפי לתחום בו מתמחה הסוכן. בזכות דרישות המשאבים המצומצמות והגודל הקטן יותר שלהם, שירותי SLM יכולים בדרך כלל להתאים בול למגמת ה-Agentic AI, בכך שהם מאפשרים קבלת החלטות אוטונומית בקצה.
אמנם מודלי SLM עשויים לדרוש הכשרה מיוחדת מלכתחילה, אבל מנגד עומד היתרון של הפחתת הסיכונים הכרוכים בשימוש ב-LLM של צד שלישי וספקים חיצוניים. זהו יתרון עצום, המצטרף לשאר יתרונותיהם: יכולת הסבר גדולה יותר, ביצועים מהירים יותר ויכולת ביצוע מדויק, עקבי ושקוף יותר, המצטרפים לשליטה רבה יותר על פרטיות ואבטחת הנתונים.
#שילוב של המודלים
כיום מבינים שאמנם אין תחרות ל-LLMs בגודל ובעוצמה, אך הסתמכות יתר עליהם יכולה להוביל לתחושת ביטחון מוגזמת, לשאננות ולטעויות קריטיות שעלולות לחמוק מבלי להתגלות.
כך שאולי LLMs ו-SLMs אינם סותרים אלא משלימים. יתכן שבפועל, SLMs יכולים לחזק את ה-LLMs וליצור פתרונות היברידיים, משולבים, שבהם ה-SLMs ממונים על הביצוע הספציפי והמדויק בעוד ה-LLMs מספקים את הקונטקסט, ההקשר הרחב יותר .
מהם SLMs ומה יתרונות מודלי השפה הקטנים הללו:
https://youtu.be/C4Qt9Hnp6vs
הסבר פשוט וקצר:
https://youtu.be/AlwWuSor_M4
למה לבחור SLM ולאילו מגבלות לשים לב אל מול ה-LLM?
https://youtu.be/Hg8f5bjtsWc
ומודל השפה הקטן של מיסטרל:
https://youtu.be/nCXTdcggwkM

מודל שפה גדול (LLM), קיצור של Large Language Model, הוא ה"מוח" שמפעיל צ'אטבוט עוצמתי, כמו הצ'אטבוט ChatGPT, המייצר תוכן לבקשת המשתמשים ועושה זאת באמצעות מודל השפה הגדול GPT-4 ואחרים.
את התוכן מייצר הצ'אטבוט מדאטה עצום, כמות מידע אדירה שנשאבה מהאינטרנט ובאמצעותה אימנו את מודל השפה שמפעיל אותו. מודלי השפה GPT-3 ו-GPT-4, למשל, הם שמפעילים את הצ'אטבוט הכי מפורסם ChatGPT.
יש שאומרים שמודל השפה בעצם הוא לא יותר ממחולל מילים סטטיסטי. הם צודקים אבל גם טועים. כי מודל שפה יכול לחשב מצוין הסתברות של הופעת מילים שונות בכל משפט וכך לייצר משפטים חדשים, מילה אחר מילה, בשפה שבה הוא אומן על ידי המפתחים שלו. אבל זו דוגמה בלבד ואפילו קצת מטעה. כי סטטיסטיקה זה לא הכל וכנראה לא לגמרי המהות של העניין. המוח של מודל השפה, האופן שבו הוא בנוי והתובנות והביצועים שהוא יכול לנפק, הם משמעותיים הרבה יותר.
מודל כזה הוא תת-תחום של למידה עמוקה ומבוסס על רשת עצבית מלאכותית הבנויה בצורה דומה למוח האנושי. הרשת הזו היא בעלת כמות אדירה של פרמטרים, לרוב מיליארדים. הפרמטרים הללו הם ערכים מספריים שמסייעים לאלגוריתם ללמוד.
עוד ביטוי לגודלו הגדול של המודל הוא באימון שלו על מאות מיליוני מילים, בכמויות ענק של טקסט לא מתויג, בשיטת למידה שאינה מסתמכת רק על דוגמאות אנושיות, או מה שנקרא "למידה בפיקוח-עצמי".
#איך זה בדיוק עובד?
נניח ששאלתם שאלה, מודל השפה הגדול מניח את נוסח השאלה על שולחן הטיפולים שלו ובודק בדאטה שלו, במידע העצום שהוא אגר והמיר לקוד מתמטי (ראו אח"כ בתגית" טוקנים"), מה המילה שהכי סביר (מבחינת הסתברות) שתתחיל את התשובה. ואז הוא בודק מה המילה עם ההסתברות הכי גבוהה להופיע אחריה וכך הלאה. זה ייתן לו את התשובה הסבירה ביותר לשאלה.
למה הכי סבירה ולא הכי טובה? - כי הסתברות היא לעולם לא מושלמת וזו בדיוק הסיבה להזיות שנקבל לא פעם ממנועי בינה מלאכותית. אגב, אם תבקשו ממנו לבדוק את תשובתו, כל LLM ימצא ויפרט את שגיאותיו וגם יציע לתקן את המענה שנתן ובתיקון זה כבר יהיה הרבה יותר טוב.
ה-LLM משתמש בייצוג מתמטי של שפה טבעית באמצעות הסתברויות. כל מדען נתונים יאשר שהבסיס של מודלי שפה הוא היכולת שלהם לחשב הסתברות לכל משפט בשפה שבה הם אומנו ומהיכולת הזו נובע חלק משמעותי ביכולת שלהם לייצר משפטים חדשים, מילה אחר מילה.
#מודלי השפה הגדולים והבינה הג'נרטיבית
מודל השפה הגדול הוא בעצם הבסיס למהפכת הבינה הגנרטיבית שפרצה לחיינו בשלהי 2022-תחילת 23. מודלי השפה הגדולים הללו מסמנים קפיצת דרך של ממש ולמעשה הכניסו אותנו עמוק אל תוך העתיד.
הייתה זו IBM שפיתחה את אחד ממודלי השפה הראשונים. הוא נקרא ווטסון, על שם תומאס ווטסון, מייסד IBM. יש גרסה שאומרת שהוא קיבל את שמו משמו משם העוזר של שרלוק הולמס, ווטסון. מודל כזה, ממש כמו אותו עוזר, תמיד מסייע בחקר ובתשובות שונות, כיום של רבים ואצל שרלוק, לצרכי החקירות של הבלש הנודע.
מצוידים במודלים החדשים, הצ'אטבוטים המרשימים, כמו Claude ו-ChatGPT, מסרבים להיות לכם לווטסון. במקום זאת הם מפותחים כך שיהיו המוח, כלומר השרלוק שלכם, כשאתם וכמה זה אירוני, בתפקיד הווטסון או העוזר שלהם... אבל גם הלקוחות.
מודל שפה הוא שמאפשר לנו לבקש ממנו לסכם טקסטים, לענות על שאלות, לצייר או בעצם לייצר תמונות ו"צילומים", לחבר שירים, ליצור סרטונים או לכתוב קוד.
אז מודלי שפה גדולים אפשרו את קפיצת הדרך המדהימה של מהפכת ה-AI. אמנם הם רחוקים מלהיות מושלמים לחלוטין ועדיין פה ושם מקלקלים את ההתפעלות עם ההזיות המוכרות האלה שלהם, עובדות שגויות, מידע לא רלוונטי או מופרך ואפילו עלבונות נדירים. ומה שלא פחות מרגיז לעתים הוא הביטחון המלא שבו הם כותבים או מדברים אותן, שזה בדיוק מה שהופך את חשיפת ההזיות ובדיות הללו לכל כך קשה ומסוכנת...
כיום, המודלים הללו הולכים ומאפשרים צמיחה של עולם חדש, עולם סוכני ה-AI. הם ממוקדים בביצוע משימות ספציפיות, תגובה לסביבה ועוד תכונות מבטיחות. הכירו אותם בתגית "סוכני AI".
הנה מה שעושים המודלים, מנועי השפה הגדולים (מתורגם):
https://youtu.be/X-AWdfSFCHQ
כך פורצת מלחמת עולם ה-AI הראשונה:
https://youtu.be/nJjuYTpHQEE
מהו LLM?
https://youtu.be/iR2O2GPbB0E
המודל השולט בינואר 2025 - DeepSeek R1 הסיני:
https://youtu.be/hupQ97Or3jw
השוואת הצ'טבוטים הטובים, מנועי השפה הגדולים בסוף 2024 (עברית):
https://youtu.be/NanvGTQeO-g
כך פועל מודל השפה הגדול LLM:
https://youtu.be/iR2O2GPbB0E
כך בנויים ופועלים מודלי השפה הגדולים:
https://youtu.be/5sLYAQS9sWQ
יש להם גם חסרונות:
https://youtu.be/Gf_sgim24pI
הסבר מעמיק על מודלים גדולים של שפה ומה שהם הובילו (עברית):
https://youtu.be/-NIsUKUnxhA?long=yes
הפרמטרים והטוקנים באימון מודלים כאלו:
https://youtu.be/r17HV0TzAWw?long=yes
ובאופן סטטיסטי - כך פועל LLM:
https://youtu.be/LPZh9BOjkQs?long=yes

מודל היגיון (Reasoning Model) הוא מודל שנועד לחקות את תהליך החשיבה האנושית ולהסיק מסקנות לוגיות על בסיס מידע נתון.
מודלי ריזונינג נוטים להיות כבדים יותר ולספק תובנות עמוקות, באמצעות הסקה רב-שלבית, מורכבת ומעמיקה. כמובן שהם משתמשים בטכניקות של בינה מלאכותית ולמידת מכונה כדי לנתח נתונים, לזהות דפוסים ולהסיק מסקנות מבוססות עובדות.
בדרך לתת תשובה מחלקים מודלי הגיון את פתרון הבעיה לשלבים, מתעכבים על התשובות, מהרהרים, בודקים, לעתים מתקנים את עצמם (בתכנות רואים את זה היטב) ומבצעים תהליכי ניתוח מורכבים.
בגדול - הם מבצעים חשיבה מתמשכת ומבוססת יותר מזו של מודלי שפה רגילים.
מודל הגיון שכזה מתאים מאוד לפתרון ברמת דוקטור (PhD) של בעיות מורכבות, בעיקר מתמטיות, מדעיות והנדסיות. הוא מושלם לחישובים מורכבים ודברים כמו מתמטיקה, פיזיקה, פיתוח קוד והסקת מסקנות.
ואגב, מודל ריזונינג דורש כוח מחשוב משמעותי מהרגיל, לפחות במקרה של מודל ChatGPT 4o1 של OpenAI וקצת פחות במודל הסיני המפתיע DeepSeek, שפותח לכאורה בגרושים ומראה תוצאות מרשימות בדרישות חומרה נמוכות בהרבה.
#החשיבה דרך הבעיה
מודל היגיון, הוא מודל מנומק, שמשתמש בהיגיון כדי "לחשוב דרך" הבעיה ולהיות מסוגל גם להראות את תהליך החשיבה שביצע, לפני שנותן את התוצאות. זאת בניגוד למודלים הרגילים שמבצעים אופטימיזציה סבירה, רק כדי שיוכלו לספק את התשובה המהירה ביותר (שזה מה שגם גורם לא פעם למודל שפה רגיל לתרום לנו בדרך את ה"הזיות", אותן Halucinations המוכרות לנו כל כך).
בקיצור, אם מודל שפה רגיל הוא הבחור הטקסטואלי שהוא אלוף על טקסטים ועונה מהר, מודל ההיגיון הוא הנערה המבריקה והריאלית, שיכולה לפצח בעיות מופשטות, מתמטיות, פיזיקליות ומדעיות בתחומים ומדעים מדויקים, בלי למצמץ ועם יכולת לנמק ולהסביר את הפתרון שאליו היא מגיעה, צעד אחר צעד.
מודל כזה מבצע לעתים קרובות "שרשרת מחשבה" (Chain of Thought) ולכן גם מכונה כך לפעמים. המודל חושב צעד אחר צעד, בצורה שמזכירה את האופן שבו אנו, בני האדם, עשויים לגשת לאתגר משמעותי יותר כמו פיתוח אפליקציה חדשה, תכנון חופשה או בניית בית.
#היתרון
משמעותו של מודל כזה היא ביכולת שלו לספק תשובות מדויקות ומושכלות לשאלות מורכבות, לפתור בעיות ולקבל החלטות מבוססות נתונים. לכן וכדי להצטיין בבעיות מסובכות יותר, מומלץ להזין אותו בכמה שיותר הקשר, קונטקסט (Context) לגבי הנושא והגישה לפתרון.
#במה הם יכולים לעזור לנו?
מודלים כאלו יכולים לנתח כמויות גדולות של נתונים במהירות ובדיוק, לזהות דפוסים ולהסיק מסקנות. הם יכולים לפתור בעיות מורכבות על ידי שימוש בלוגיקה ובאלגוריתמים מתקדמים.
ביכולתם גם לסייע בקבלת החלטות מבוססות נתונים, מה שיכול להיות מועיל בתחומים כמו רפואה, כלכלה וניהול. בנוסף, הם יכולים להסיק מסקנות לוגיות על בסיס הנתונים שנתונים להם, מה שיכול לסייע בתחזיות ובתכנון.
מודלי ההיגיון יכולים לחסוך זמן ומאמץ בביצוע משימות מורכבות, מה שמאפשר למשתמשים להתמקד בפעילויות אחרות. ביכולתם לספק תשובות מדויקות ומבוססות עובדות, מה שיכול להיות מועיל בתחומים כמו רפואה, משפטים והנדסה.
מודלים אלו מסייעים בקלות בקבלת החלטות מושכלות ומבוססות נתונים, מה שיכול להיות מועיל בחיי היומיום ובעבודה והם יכולים גם לסייע בפתרון בעיות מורכבות במהירות וביעילות, מה שיכול להיות מועיל בתחומים רבים.
ברפואה, מודלי היגיון יכולים לסייע באבחון מחלות ובמתן המלצות לטיפול על בסיס נתונים רפואיים.
בכלכלה, ניתן להסתייע בהם בניתוח שוק ההשקעות ובקבלת החלטות כלכליות מבוססות נתונים.
בחינוך, המודלים הללו יכולים לסייע בהוראה ובלמידה על ידי סיפוק הסברים מדויקים ומושכלים לשאלות מורכבות.
בניהול, הם מעולים הסיוע לניהול משאבים מוצלח ובקבלת החלטות ניהוליות מבוססות נתונים.
אז אם לסכם, מודל היגיון הוא כלי חזק שיכול לסייע במגוון רחב של תחומים ולשפר את איכות החיים של המשתמשים, על ידי סיפוק תשובות מדויקות ומבוססות עובדות. עם יכולותיו הוא מאפשר לנתח נתונים במהירות, לפתור בעיות מורכבות ולקבל החלטות מבוססות נתונים, מה שהופך אותו לאחד הכלים החיוניים ביותר בדור החדש של העידן הדיגיטלי מבוסס הבינה המלאכותית.
הנה מודל ההגיון הסיני Deepseek R1 שיודע לחשוב מראש, לתכנן, להשוות כמה תשובות אפשריות, לפרק את הבעיה לחלקים, לחזור אחורה ולחשוב מחדש על השאלה וכך לענות היטב על שאלות קשות, מורכבות ועד לא מזמן בלתי אפשריות למודל שפה:
https://youtu.be/-2k1rcRzsLA
דוגמה לבעיות פשוטות מהחיים שמודל מנומק יכול לפתור:
https://youtu.be/yQampjl6gPI
שניים כאלה:
https://youtu.be/rzMEieMXYFA
ו-DeepSeek R1 הוא מודל מנומק בקוד פתוח:
https://youtu.be/yT3KGbiA09Q

מחשב מתכנת לבדו? - באופן מסוים כן. כי כלי קוד מבוססי בינה מלאכותית (AI-based code tools) מאפשרים לשלב את הרעיון או המומחיות האנושית עם היכולות של הבינה המלאכותית, כדי לפתח תוכנה ולעשות זאת ללא קידוד של המשתמש או באמצעות שיתוף פעולה בין המשתמש ל-AI.
קידוד מבוסס AI מתבסס על בינה מלאכותית ככותבת הקוד. כתיבת הקוד מתבססת על מודל שפה שאומן על נתוני דאטה עצומים ולמד קידוד.
המשתמש מאפיין את המוצר, אם זה אתר אינטרנט, תוכנה או אפליקציה לטלפון ומתאר אותו באמצעות פרומפט, הנחייה שהוא כותב לבינה היוצרת בלשון טבעית, כלומר שפה רגילה, שפת יום יום וללא צורך בידע בתכנות.
החיבור בין הרעיון והשכל האנושי ובין האינטליגנציה המלאכותית מאפשרים ניהול וביצוע משימות פיתוח, בשיתוף פעולה ועצמאות גם יחד.
באמצעות תכונות של AI מקודד ניתן לתאר ל-AI את המטרה, לקבל קוד, להנחות אותה כיצד להתקדם בפתרון בעיות או באגים בקוד ולהוביל ביחד לקוד איכותי ולמימוש הרעיון.
ה-AI המקודד מודע לפעולות המשתמש בזמן אמת ומציע יתרונות אדירים. הוא מסוגל לערוך קבצים מרובים במהירות אדירה, להציע פקודות, לזהות בעיות ולנפות באגים.
כלי הקוד המשובח "Windsurf AI", למשל, מפעיל סוכני AI מובנים, יחד עם מעין "טייסי משנה" מונעי בינה מלאכותית, שמטרתם להטעין את הקוד ולהפוך את הקידוד למהיר ואינטואיטיבי יותר.
בעצם, Windsurf ודומיו, דוגמת Cursor AI שהיה חלוץ הכלים הללו, הם מעין סביבת פיתוח (IDE) מהדור החדש, המשפרות את הפיתוח בעזרת אוטומציה חכמה ומציעות עריכת קוד בסביבה מרובת קבצים. וינדסרף עושה זאת, בין השאר, בעזרת כלי שנקרא Cascade ומצטיין במודעות עמוקה לקונטקסט, ההקשר הכל כך בסיסי ומרכזי בבינה המלאכותית היוצרת (Generative AI).
כלי נוסף וקל הרבה יותר הוא Websim AI, המאפשר לתאר אתר או אפליקציה, או סתם לתת שם דומיין מדומה, והיא יוצרת אותם. מכאן אפשר להנחות אותה בצעדים, איטרציות, מה שמאפשר לדייק אותה, לשפר, לשדרג ולבנות הלאה.
הנה כלי קוד מבוססי אינטליגנציה מלאכותית:
https://youtu.be/3cVJxRka4yM
AnyChat מצויד בדיפסיק וסמבה נובה לקידוד פשוט:
https://youtu.be/7BIVWQnAOLk?t=2m54s
השוואה של 3 מודלי שפה LLMs במהירות יצירת קוד למטלה זהה:
https://youtu.be/_JS-LkBrsk8
השוואת 5 כלי קוד מובילים והמנצח המפתיע:
https://youtu.be/WVhJSUtGbYM
יישום של תוכנה שפותחה כך, ללא כתיבת קוד:
https://youtu.be/lkom9ufvxD4
Websim.ai הוא כלי קוד קל מאוד וקסם ללא תכנות:
https://youtu.be/HCw4jCbLgMY
איך ChatGPT בניתוח קוד? (עברית)
https://youtu.be/Z46pqHFuKHs
רפליט הוא כלי קוד בינתי מתקדם יותר:
https://youtu.be/FrMy3Bq7TZA
לקודד אפשר גם בסמארטפון:
https://youtu.be/Cmq3TrS3ccU
מדריך מתחילים לתכנות עם Cursor AI:
https://youtu.be/ocMOZpuAMw4?long=yes
ומדריך לעבודה עם Windsurf:
https://youtu.be/4nCMdQadE08?long=yes
איך התכנות יורד לעם בעזרת בינה מלאכותית יוצרת?
בימי AI אלה, של פברואר 2025, נראה שאנו רואים את השינוי בכתיבת קוד בכלל ובתכנות של אפליקציות לסוגיהן בפרט.
וזה לא ממש תכנות, עם כתיבת קוד וחלוקה למסמכים שיוצרים תוכנה, אלא יותר תהליך של חשיבה וחלוקת הוראות. כולנו יכולים לחשוב על רעיון, לנסח אותו כפרומפט, אולי גם לדמיין ולצייר מסכים, להציגם ל-AI, לראות קוד ואת התוצאה, לאשר או להציע תיקונים, לשפר את המודל ולראות את התוצאה משתפרת.
גם אם זה נשמע בלתי אפשרי, זה בדיוק מה שהבינה היוצרת מאפשרת כיום, כמעט לכל אחד, כולל מי שלא למדו מעולם לקודד ולתכנת. אחד מגאוני ה-AI של הדור החדש, אנדריי קרפאטי (Andrej Karpathy), מסביר שכלי ה-GenAI משנים את אופן פיתוח התוכנה מהיסוד וקורא לזה “תכנות וייב” (Vibe Coding).
תכנות הווייב פירושו תכנות שלא בקוד אלא של מפתחים שמתרכזים ברעיונות הגדולים ונותנים ל-AI לטפל בשאר - מהקוד והאיטרציות (שפירושן שיפור וניסוי שוב ושוב), דרך הפרטים הטכניים, הטיפול בבסיס הנתונים (Database), ב-API ובהעלאת הכלי לאונליין (Deployment).
ומדובר בשינוי של כל החוקים שהכרנו. המעבר הזה מכתיבת הקוד לפתרון בעיות באמצעות חשיבה מדויקת ככל האפשר, הנחיות ל-AI, עיצוב מסכים והעלאתם כטיוטות עיצוב לבינה, כל אלו הם חלום שמתממש. משמעותם הפשוטה היא דמוקרטיזציה של עולם פיתוח התוכנה.
והאפשרויות החדשות הללו מאפשרות עכשיו גם לאנשים ללא רקע תכנותי או היכרות והבנה בקוד, להגשים את רעיונותיהם - על ידי יצירה של תוכנות מקוונות, אפליקציות או כלים שונים, באמצעות כלים בינתיים וטכנולוגיים, המופעלים על ידי אדם ולידו בינה מלאכותית, שמקבלת ומבצעת הוראות.
אז המרחק, שבעבר היה גדול מאוד, בין הרעיון למימושו, תלוי עכשיו במשתמש ורק בו. כלים רבים לקידוד מבוסס פרומפטים יש כיום והם משתכללים מיום ליום. המוח האנושי יידע להנפיק מהם גם שיפורים אישיים ומרהיבים לחיים המודרניים וגם כלים חדשים ומעולים לשימוש בעתיד.
הנה הארטיפקט של קלוד, שאחרי קידוד ניתן לשתף את יצירתכם ב-Publish לאחרים:
https://youtu.be/vUdNaAAc4FY
שיעור תכנות ללא תכנות בכלי Lovable:
https://youtu.be/gqsZGxuymTk?long=yes
Websim.ai הוא כלי קוד שמשלב את העיצוב בקידוד וניתן לתכנת בו ללא תכנות:
https://youtu.be/HCw4jCbLgMY
Replit הוא כלי שבו ניתן לקודד גם בסמארטפון:
https://youtu.be/Cmq3TrS3ccU
כלי קוד מבוססי אינטליגנציה מלאכותית:
https://youtu.be/3cVJxRka4yM
השוואה של 3 מודלי שפה LLMs במהירות יצירת קוד למטלה זהה:
https://youtu.be/_JS-LkBrsk8
יישום של תוכנה שפותחה כך, ללא כתיבת קוד:
https://youtu.be/lkom9ufvxD4
איך ChatGPT בניתוח קוד? (עברית)
https://youtu.be/Z46pqHFuKHs
רפליט הוא כלי קוד בינתי מתקדם יותר:
https://youtu.be/FrMy3Bq7TZA
מדריך מתחילים לתכנות עם Cursor AI:
https://youtu.be/ocMOZpuAMw4?long=yes
ומדריך לעבודה עם Windsurf:
https://youtu.be/4nCMdQadE08?long=yes
בימי AI אלה, של פברואר 2025, נראה שאנו רואים את השינוי בכתיבת קוד בכלל ובתכנות של אפליקציות לסוגיהן בפרט.
וזה לא ממש תכנות, עם כתיבת קוד וחלוקה למסמכים שיוצרים תוכנה, אלא יותר תהליך של חשיבה וחלוקת הוראות. כולנו יכולים לחשוב על רעיון, לנסח אותו כפרומפט, אולי גם לדמיין ולצייר מסכים, להציגם ל-AI, לראות קוד ואת התוצאה, לאשר או להציע תיקונים, לשפר את המודל ולראות את התוצאה משתפרת.
גם אם זה נשמע בלתי אפשרי, זה בדיוק מה שהבינה היוצרת מאפשרת כיום, כמעט לכל אחד, כולל מי שלא למדו מעולם לקודד ולתכנת. אחד מגאוני ה-AI של הדור החדש, אנדריי קרפאטי (Andrej Karpathy), מסביר שכלי ה-GenAI משנים את אופן פיתוח התוכנה מהיסוד וקורא לזה “תכנות וייב” (Vibe Coding).
תכנות הווייב פירושו תכנות שלא בקוד אלא של מפתחים שמתרכזים ברעיונות הגדולים ונותנים ל-AI לטפל בשאר - מהקוד והאיטרציות (שפירושן שיפור וניסוי שוב ושוב), דרך הפרטים הטכניים, הטיפול בבסיס הנתונים (Database), ב-API ובהעלאת הכלי לאונליין (Deployment).
ומדובר בשינוי של כל החוקים שהכרנו. המעבר הזה מכתיבת הקוד לפתרון בעיות באמצעות חשיבה מדויקת ככל האפשר, הנחיות ל-AI, עיצוב מסכים והעלאתם כטיוטות עיצוב לבינה, כל אלו הם חלום שמתממש. משמעותם הפשוטה היא דמוקרטיזציה של עולם פיתוח התוכנה.
והאפשרויות החדשות הללו מאפשרות עכשיו גם לאנשים ללא רקע תכנותי או היכרות והבנה בקוד, להגשים את רעיונותיהם - על ידי יצירה של תוכנות מקוונות, אפליקציות או כלים שונים, באמצעות כלים בינתיים וטכנולוגיים, המופעלים על ידי אדם ולידו בינה מלאכותית, שמקבלת ומבצעת הוראות.
אז המרחק, שבעבר היה גדול מאוד, בין הרעיון למימושו, תלוי עכשיו במשתמש ורק בו. כלים רבים לקידוד מבוסס פרומפטים יש כיום והם משתכללים מיום ליום. המוח האנושי יידע להנפיק מהם גם שיפורים אישיים ומרהיבים לחיים המודרניים וגם כלים חדשים ומעולים לשימוש בעתיד.
הנה הארטיפקט של קלוד, שאחרי קידוד ניתן לשתף את יצירתכם ב-Publish לאחרים:
https://youtu.be/vUdNaAAc4FY
שיעור תכנות ללא תכנות בכלי Lovable:
https://youtu.be/gqsZGxuymTk?long=yes
Websim.ai הוא כלי קוד שמשלב את העיצוב בקידוד וניתן לתכנת בו ללא תכנות:
https://youtu.be/HCw4jCbLgMY
Replit הוא כלי שבו ניתן לקודד גם בסמארטפון:
https://youtu.be/Cmq3TrS3ccU
כלי קוד מבוססי אינטליגנציה מלאכותית:
https://youtu.be/3cVJxRka4yM
השוואה של 3 מודלי שפה LLMs במהירות יצירת קוד למטלה זהה:
https://youtu.be/_JS-LkBrsk8
יישום של תוכנה שפותחה כך, ללא כתיבת קוד:
https://youtu.be/lkom9ufvxD4
איך ChatGPT בניתוח קוד? (עברית)
https://youtu.be/Z46pqHFuKHs
רפליט הוא כלי קוד בינתי מתקדם יותר:
https://youtu.be/FrMy3Bq7TZA
מדריך מתחילים לתכנות עם Cursor AI:
https://youtu.be/ocMOZpuAMw4?long=yes
ומדריך לעבודה עם Windsurf:
https://youtu.be/4nCMdQadE08?long=yes
מה זה UBI שישמור בעתיד על מובטלי ה-AI?
מדובר ברעיון מסעיר ויצירתי. הוא נקרא "הכנסה בסיסית אוניברסלית" (Universal Basic Income בקיצור UBI) ובעזרתו יש מי שמנסים לקדם את פני הרעה של הקדמה הבינתית, המאיימת על כל עולם התעסוקה של העתיד.
כוונתו להעמיד לרשות כל אדם הכנסה בסיסית, שמטרתה לסייע בהפחתת ההשפעות של הטכנולוגיה על העובדים. הכנסה בסיסית כזו תחושב על ידי "חישוב בסיסי אוניברסלי" ודי אחיד.
הרעיון הוא להציע הכנסה בסיסית אוניברסלית, מעין תשלום מזומן, ללא תנאים, שיינתן לכל מבוגרי האוכלוסייה, ללא קשר לעושרם ולמצבם התעסוקתי. המטרה היא לספק רשת ביטחון לאנשים שהמשרות והתעסוקה שלהם מאוימות על ידי חידושי הטכנולוגיה, כולל ובמיוחד הרובוטיקה והבינה המלאכותית.
הכוונה היא לאפשר להם לחפש עבודה בתחומים שמדברים אליהם ומעניינים אותם, בדברים שיסייעו להם לממש את עצמם והם יכולים להצליח בהם, לבלוט ולנצנץ - אולי אפילו ליזום עסק משלהם וליצור לעצמם בסיס כלכלי מבלי להיות שכירים, באיום מתמיד של אבטלה...
גם אם שמרנים רבים נוטים לדחות את מה שהם תופסים כרווחה שתקטין את המוטיבציה של אנשים לחפש עבודה ולעבוד, ניסיונות לחלק UBI לתושבי ערים ומדינות בארצות הברית הראו תוצאות חיוביות בדרך כלל. חלק מהתוכניות הללו, אגב, העניקו את התשלומים באופן סלקטיבי לאנשים, על סמך הצורך המוכח או המעמד החברתי שלהם ולא לכל האוכלוסייה כולה.
בין התומכים ביוזמה הזו ניתן למצוא גם רבים מראשי ומצליחני ההייטק, כולל מי שמובילים את התפוצצות ה-AI הנוכחית, ביניהם מנכ"ל חברת OpenAI והאדם הכי חזק בעולם הבינה המלאכותית כרגע, סם אלטמן.
לשיטתו, דווקא בשל החשש שהבינה המלאכותית תלך ותחליף אינספור עובדים אנושיים, כולל אנשים שלמדו מקצועות ורכשו תארים ומומחיות ויהפכו למובטלים, אולי אפילו מובטלים כרוניים, דווקא בצל החשש הזה כדאי לתת את ההכנסה הבסיסית המדוברת.
לשיטתו של אלטמן, כל אזרח יקבל, אולי במקום כסף, חלק ממחשב סופר-מתקדם, שהוא מכנה לצורך העניין GPT-7. כל מקבל כזה, אלטמן גורס, יכול יהיה לעשות כרצונו בחלק שקיבל. יהיו מי שישתמשו בו ויקימו מיזם, למשל טכנולוגי, או יהיו שותפים במיזם כזה, אחרים ירצו אולי למכור את החלק שלהם לאחרים, יהיו שיעדיפו לתרום אותו לטובת מחקר בפתרון בעיות עולמיות, כמו משבר האקלים או חקר הסרטן.
ההנחה של מנכ"ל OpenAI היא שעם הטמעתה של הבינה המלאכותית המתקדמת ביותר ויותר היבטים של חיינו, הבעלות על יחידה של מודל שפה גדול, כזה שהוא מכנה GPT7, עשויה להיות בעלת ערך גדול יותר מאשר כסף. אלטמן רואה עולם בו כל אדם בחברה העתידית יחזיק למעשה חלק מהקידמה והיצרנות העתידית ויוכלו להבטיח לעצמם ולמשפחתם פרנסה בעתיד.
הנה רעיון ההכנסה הבסיסית אוניברסלית (עברית):
https://youtu.be/8rM_-49DPe4
בטלנות? רוגע כלכלי? - על ניסוי ראשון איך זה ישפיע על בני אדם? (עברית)
https://youtu.be/u_-N_AWQQiI
בעלי מקצוע מפחדים על העבודה שלהם (עברית):
https://youtu.be/0AGYOv0sGHg
וסרטון מקיף על ה-UBI ומשמעויותיו (מתורגם):
https://youtu.be/kl39KHS07Xc?long=yes
מדובר ברעיון מסעיר ויצירתי. הוא נקרא "הכנסה בסיסית אוניברסלית" (Universal Basic Income בקיצור UBI) ובעזרתו יש מי שמנסים לקדם את פני הרעה של הקדמה הבינתית, המאיימת על כל עולם התעסוקה של העתיד.
כוונתו להעמיד לרשות כל אדם הכנסה בסיסית, שמטרתה לסייע בהפחתת ההשפעות של הטכנולוגיה על העובדים. הכנסה בסיסית כזו תחושב על ידי "חישוב בסיסי אוניברסלי" ודי אחיד.
הרעיון הוא להציע הכנסה בסיסית אוניברסלית, מעין תשלום מזומן, ללא תנאים, שיינתן לכל מבוגרי האוכלוסייה, ללא קשר לעושרם ולמצבם התעסוקתי. המטרה היא לספק רשת ביטחון לאנשים שהמשרות והתעסוקה שלהם מאוימות על ידי חידושי הטכנולוגיה, כולל ובמיוחד הרובוטיקה והבינה המלאכותית.
הכוונה היא לאפשר להם לחפש עבודה בתחומים שמדברים אליהם ומעניינים אותם, בדברים שיסייעו להם לממש את עצמם והם יכולים להצליח בהם, לבלוט ולנצנץ - אולי אפילו ליזום עסק משלהם וליצור לעצמם בסיס כלכלי מבלי להיות שכירים, באיום מתמיד של אבטלה...
גם אם שמרנים רבים נוטים לדחות את מה שהם תופסים כרווחה שתקטין את המוטיבציה של אנשים לחפש עבודה ולעבוד, ניסיונות לחלק UBI לתושבי ערים ומדינות בארצות הברית הראו תוצאות חיוביות בדרך כלל. חלק מהתוכניות הללו, אגב, העניקו את התשלומים באופן סלקטיבי לאנשים, על סמך הצורך המוכח או המעמד החברתי שלהם ולא לכל האוכלוסייה כולה.
בין התומכים ביוזמה הזו ניתן למצוא גם רבים מראשי ומצליחני ההייטק, כולל מי שמובילים את התפוצצות ה-AI הנוכחית, ביניהם מנכ"ל חברת OpenAI והאדם הכי חזק בעולם הבינה המלאכותית כרגע, סם אלטמן.
לשיטתו, דווקא בשל החשש שהבינה המלאכותית תלך ותחליף אינספור עובדים אנושיים, כולל אנשים שלמדו מקצועות ורכשו תארים ומומחיות ויהפכו למובטלים, אולי אפילו מובטלים כרוניים, דווקא בצל החשש הזה כדאי לתת את ההכנסה הבסיסית המדוברת.
לשיטתו של אלטמן, כל אזרח יקבל, אולי במקום כסף, חלק ממחשב סופר-מתקדם, שהוא מכנה לצורך העניין GPT-7. כל מקבל כזה, אלטמן גורס, יכול יהיה לעשות כרצונו בחלק שקיבל. יהיו מי שישתמשו בו ויקימו מיזם, למשל טכנולוגי, או יהיו שותפים במיזם כזה, אחרים ירצו אולי למכור את החלק שלהם לאחרים, יהיו שיעדיפו לתרום אותו לטובת מחקר בפתרון בעיות עולמיות, כמו משבר האקלים או חקר הסרטן.
ההנחה של מנכ"ל OpenAI היא שעם הטמעתה של הבינה המלאכותית המתקדמת ביותר ויותר היבטים של חיינו, הבעלות על יחידה של מודל שפה גדול, כזה שהוא מכנה GPT7, עשויה להיות בעלת ערך גדול יותר מאשר כסף. אלטמן רואה עולם בו כל אדם בחברה העתידית יחזיק למעשה חלק מהקידמה והיצרנות העתידית ויוכלו להבטיח לעצמם ולמשפחתם פרנסה בעתיד.
הנה רעיון ההכנסה הבסיסית אוניברסלית (עברית):
https://youtu.be/8rM_-49DPe4
בטלנות? רוגע כלכלי? - על ניסוי ראשון איך זה ישפיע על בני אדם? (עברית)
https://youtu.be/u_-N_AWQQiI
בעלי מקצוע מפחדים על העבודה שלהם (עברית):
https://youtu.be/0AGYOv0sGHg
וסרטון מקיף על ה-UBI ומשמעויותיו (מתורגם):
https://youtu.be/kl39KHS07Xc?long=yes
מהו המחשב המלחין?
המחשב IAMUS הוא מחשב שמלחין מוסיקה. IAMUS שהתוכנה שבו יוצרת מנגינות, הרמוניה ומרקמים מוסיקליים נעימים לאוזן, נבנה בידי מדענים באוניברסיטה של מאלגה בספרד.
אם היה מבחן טיורינג ליצירתיות, מעניין אם המוסיקה של המחשב יאמוס הייתה מסוגלת להטעות אנשים מיומנים לחשוב שהיא נכתבה בידי בני אדם. כלומר, האם מלחין וירטואלי היה מצליח להתחזות למלחין בן אנוש..
כמובן שיאמוס המחשב אינו יצירתי כמו בן-אנוש. בשלב הזה הוא בעיקר יודע לבצע את פעולת ההלחנה, על פי הכללים ה"נכונים" שאותם יודע כל מלחין מיומן שלמד וקיבל השכלה מוסיקלית. לגבי היופי והמקוריות של המוסיקה שיוצר המחשב הזה, יש מחלוקת רבה עד כמה הוא "יצירתי".
הכירו את מבחן לאבלייס שבוחן אם מכונה אכן ממציאה רעיונות מוסיקליים בעצמה (מתורגם):
https://youtu.be/Rh9vBczqMk0
למידת מכונה שמסייעת ליוצרים לחבר מקצבים ומהלכים בהיפ הופ:
https://youtu.be/mOjWyRqiDds
הבה נחקור את תוכנת IAMUS של המלחין הממוחשב:
https://youtu.be/KhiupLtyibs
הנה יצירה של יאמוס לקלרינט סולו:
https://youtu.be/FCsbEY9pxTU
להרכב קאמרי:
https://youtu.be/Uq3iKbCNDCM
קטעים מהתקליטור הראשון של יאמוס עם מוסיקה שלו:
https://youtu.be/cv4y_BRJokM
מדריך מגניב להלחנה בעזרת קבצי MIDI שיוצר ChatGPT:
https://youtu.be/tV82Wy-tXRE?long=yes
וכלי AI שמלחין מוסיקה בסגנון יוהן סבסטיאן באך:
https://youtu.be/na2ZOUfUwbs?long=yes
המחשב IAMUS הוא מחשב שמלחין מוסיקה. IAMUS שהתוכנה שבו יוצרת מנגינות, הרמוניה ומרקמים מוסיקליים נעימים לאוזן, נבנה בידי מדענים באוניברסיטה של מאלגה בספרד.
אם היה מבחן טיורינג ליצירתיות, מעניין אם המוסיקה של המחשב יאמוס הייתה מסוגלת להטעות אנשים מיומנים לחשוב שהיא נכתבה בידי בני אדם. כלומר, האם מלחין וירטואלי היה מצליח להתחזות למלחין בן אנוש..
כמובן שיאמוס המחשב אינו יצירתי כמו בן-אנוש. בשלב הזה הוא בעיקר יודע לבצע את פעולת ההלחנה, על פי הכללים ה"נכונים" שאותם יודע כל מלחין מיומן שלמד וקיבל השכלה מוסיקלית. לגבי היופי והמקוריות של המוסיקה שיוצר המחשב הזה, יש מחלוקת רבה עד כמה הוא "יצירתי".
הכירו את מבחן לאבלייס שבוחן אם מכונה אכן ממציאה רעיונות מוסיקליים בעצמה (מתורגם):
https://youtu.be/Rh9vBczqMk0
למידת מכונה שמסייעת ליוצרים לחבר מקצבים ומהלכים בהיפ הופ:
https://youtu.be/mOjWyRqiDds
הבה נחקור את תוכנת IAMUS של המלחין הממוחשב:
https://youtu.be/KhiupLtyibs
הנה יצירה של יאמוס לקלרינט סולו:
https://youtu.be/FCsbEY9pxTU
להרכב קאמרי:
https://youtu.be/Uq3iKbCNDCM
קטעים מהתקליטור הראשון של יאמוס עם מוסיקה שלו:
https://youtu.be/cv4y_BRJokM
מדריך מגניב להלחנה בעזרת קבצי MIDI שיוצר ChatGPT:
https://youtu.be/tV82Wy-tXRE?long=yes
וכלי AI שמלחין מוסיקה בסגנון יוהן סבסטיאן באך:
https://youtu.be/na2ZOUfUwbs?long=yes
