» «

פרמטרים ב-AI

פרמטרים ב-AI
מהם ומה עושים הפרמטרים במודלי AI?



פרמטרים בלמידת מכונה (Machine Learning parameters), אם רוצים להבין מהם, אז כדאי לחשוב עליהם בתור המשתנים שקובעים את איכות ה"חשיבה" של מודל AI.

תפקידי הפרמטרים במודל שפה הם להבין הקשרים מורכבים בשפה, לחזות את המילה הבאה ברצף הטקסט שמפיק המודל ובסופו של דבר להצליח לייצר טקסט קוהרנטי (הגיוני) ומשמעותי.

אגב, במקום במילים זכרו שהטקסטים נבנים באמצעות טוקנים - ראו בתגית "טוקנים".

אבל עכשיו, אחרי שהסברנו בפשטות, הבה נפרט יותר ונרד לאיך זה נעשה: פרמטרים הם שלוכדים את הקשרים הסטטיסטיים שבין מילים ומושגי שפה שנמצאו בנתוני האימון. אפשר לדמות אותם למעין "כפתורים" בתוך המודל, שניתן לכוונם בכדי לשפר את יכולת המודל לעבד ולייצר שפה אנושית ומרשימה כל כך.

דמיינו שהידע על השפה מזוקק לתוך הפרמטרים ואז, בדומה למערכת סאונד שבה טכנאי הקול מכוונן את הכפתורים כדי להשיג את איכות הצליל הטובה ביותר, מהנדסי ה-AI מכוונים את מיליארדי הפרמטרים כדי להגיע לאיכות הגבוהה ביותר של התוצרים שהמודל ייצר.

בעצם, פרמטרים במודלים של בינה מלאכותית הם בקרי הגדרות פנימיות במודל שניתן לכוון במהלך האימון ועל ידי כך לשפר את יכולתו לעבד ולייצר שפה, תשובות ותגובות טובים יותר.

כלומר, ככל שיש במודל שפה יותר פרמטרים, גדלה גם חוכמתו ויכולתו לעשות שימוש במגוון המידע שנאגר בו. באמצעות הפרמטרים שולטים המהנדסים ברמה בה מודל AI מבין ויוצר שפה.

במהלך האימון, ערכי הפרמטרים מכוונים ומתעדכנים כדי לקודד דפוסים ממערכי הנתונים העצומים עליהם מאומנים המודלים הללו. הפרמטרים לוכדים את הקשרים הסטטיסטיים בין מילים ומושגי שפה שנמצאו בנתוני האימון. עבודה טובה איתם מאפשרת חשיבה טובה ומורכבת יותר ושימוש יותר מוצלח בידע שהמודל צבר, מה שיאפשר תגובות ותוצרים מדויקים יותר.

אגב, מספר הפרמטרים משקף בדרך כלל את גודל המודל. מודלים גדולים יותר יכולים להבין או לתפוס מורכבויות רבות יותר של שפה. מצד שני, הם גם יקרים יותר להפעלה, דורשים כוח מחשוב רב יותר ויש להם השפעה סביבתית רבה יותר, שהיא המחיר שאנו משלמים על כל ה-AI הזה.

אבל חשוב להבין שמספר הפרמטרים אינו המדד היחידי ליעילות המודל. לא פחות חשובה היא איכות הנתונים שעליהם אומן המודל. מודל קטן יותר שאומן על נתונים איכותיים יותר עשוי לבצע את המשימות טוב יותר ממודל גדול יותר שאומן על נתונים פחות מוצלחים.

כלומר, חיבור של כמות הפרמטרים, לצד איכות האימון, רמת הדאטה שעליו אומן המודל והיעילות הכוללת שלו הם המפתח ליכולות של מודל שפה.


הנה הפרמטרים במודל AI ואיך הם משתלבים בתמונה הכללית:

https://youtu.be/mnqXgojQCJI


פרמטרים וטוקנים הם לא הכל במודלים:

https://youtu.be/a1nqXQMOCks


והפרמטרים כחלק מהבינה היוצרת בכללה:

https://youtu.be/r17HV0TzAWw?long=yes


אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

העולם הוא צבעוני ומופלא, אאוריקה כאן בשביל שתגלו אותו...

אלפי נושאים, תמונות וסרטונים, מפתיעים, מסקרנים וממוקדים.

ניתן לנווט בין הפריטים במגע, בעכבר, בגלגלת, או במקשי המקלדת

בואו לגלות, לחקור, ולקבל השראה!

אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.