» «
פרומפט
מה עושה הפרומפט בעולם הבינה המלאכותית הגנרטיבית?



מהו המקביל של מברשת של הצייר, מקלדת המלחין או הבוס של כותב המאמר, עורך הווידאו או המשורר בעולם הבינה המלאכותית הגנרטיבית? - מיהו זה שאומר מה הוא צריך והם יושבים לעבוד וליצור?

זהו הפרומפט (Prompt), ההנחייה הטקסטואלית שאנחנו נותנים למכונה, כלומר לכלי הבינה הגנרטיבי (Generative AI). את ההנחייה הזו אנו כותבים לו כדי שייצר לנו תוצר בינתי.

בפשטות, פרומפט הוא התיאור המילולי בשפה טבעית של התוצר שרוצים לקבל מהבינה.

היום הפרומפט הוא המלך של עולם הבינה המלאכותית מבוססת הדיאלוג וסוגי מודלים של שפה.

זה אמנם נשמע דומה לביטוי חיפוש, אבל הפרומפט הוא לא המקבילה הפשוטה של ביטוי החיפוש במנועי חיפוש, אלא בניסוח מאוד מוקפד של התוצר הרצוי, שיכול ללכת ולהשתבח במהלך הצ'אט עם הבוט, ככל שנרצה להשביח את התוצאה שקיבלנו.


#לג'נרט אהבה
הפעולה הזו ,של ניסוח הפרומפט, זכתה בעברית החדשה לשם הפעולה "לג'נרט" (To generate). היא זו שבמידה רבה תקבע את האיכות של התוצרים.

יש אפילו מקצוע חדש שהולך ומלבלב בעולם ה-AI. הוא נקרא, החזיקו חזק, "מהנדס פרומפטים" (Prompt Engineer). מדובר באדם שמיומנותו בניסוח של פרומפטים מוצלחים.


#איך להצליח בפרומפט?
כמה מרכיבים יוכלו לסייע בכתיבת הנחיות טובות לבינה הגנרטיבית:

פירוט ודיוק - אמנם הפרומפט יכול להיות משפט פשוט כמו "כתוב סיפור לילדים על החתול שנעלם", או "מתכון לסלט חצילים". אבל במיטבו פרומפט מדויק ומפורט יותר, ישיג דיוק ואיכות טובים יותר. תיאור של התוצר המצופה, עם פרטי פרטים, יביא כמעט תמיד לתוצאות טובות יותר. הקפידו פרומפטים לכתוב:

ספציפיות - במקום לכתוב לצ'ט "צייר לי פרח" מומלץ לפרט ולבקש למשל "פרח אדום עם עלי כותרת גדולים שהקצה שלהם צהוב". אל תדאגו אם מה שאתם כותבים נשמע לכם לא הגיוני. אחד הדברים שהבינה מצויינת בהם זה יצירה של דברים שרק גאון או משוגע יכולים לחשוב עליהם וזו בדיוק היצירתיות שלכם שדרושה לג'ינרוט מוצלח. אל תבקשו מהצ'ט "מתכון לסלט" אלא בקשו "מתכון לסלט חצילים עם טחינה, מעט חריף ועם שמן זית". באופן דומה, הציבו גם מגבלות - מה לא ייכלל בתוצר. במקום לבקש "תכנית לטיול בלונדון" בקשו "תכנית לטיול של 3 ימים בלונדון, למשפחה עם בני נוער, שיהיה חינוכי ויכלול הליכה רגלית בלבד וללא שופינג".

שיפור בשלבים - את הפרומפט, בניגוד לחיפוש במנועי חיפוש, אפשר לשפר בשלבים. הצ'ט בוט של ChatGPT, למשל, זוכר את השיחה וההקשר של מה שאתם כותבים, כל עוד התכתבות היא באותו חלון שיחה. זה אומר שלמתחילים שווה לנסות ולהתחיל בפרומפט כללי ולא מפורט ובהדרגה, ככל שהשיחה והדיוק של התוצר מתקדם לכם וגם התיאבון לתוצר יותר מוצלח גדל, להמשיך ולשפר את הפרומפט ולהפוך אותו למפורט וספציפי יותר.

בקול או טון מתאימים - ניסוח של פרומפטים לטקסטים כדאי שיקל בחשבון את הטון והקול הנכונים. כמו שבפרומפט ויזואלי נוכל לבקש שהציור יהיה בסגנון של ון גוך, פיקסו או דאלי, בתיאור של טקסט החליטו אם אתם רוצים שיהיה מנוסח כרציני, מדעי, עיתונאי, רשמי, או בסגנון של מתבגרים או של החבר'ה. אפשר גם לבקש שהטקסט יהיה קצר או ארוך (כתוב לי שתי פסקאות על.. או "כתוב מאמר מלא על..." וכו').

הסבר כמו למתחיל - בקשו בפרומפט כך:

"Explain [subject] in simple terms. Explain to me as if I'm a beginner."


כך מודגם הפרומפט בפתיחת הסקירה על טכנולוגיית AI של חברת ראנוויי (עברית):

https://youtu.be/joJVqKTPVsY


השיעור הראשון בניסוח הפרומפט:

https://youtu.be/Qos2rG3zVAM


איך משתמשים ב- chatGPT כדי שהוא ינסח פרומפטים טובים למנוע תמונות, במקרה הזה Midjourney? (עברית):

https://youtu.be/zFS7WtovYmo


יש תוכנה לעזרה בניסוח פרומפטים (עברית):

https://youtu.be/HLhRFaXQ0vQ


על הפרומפט שמייצר חדשות קוליות לגיק:

https://youtu.be/5TlsXXTamBs


מודלים לציור גנרטיבי מתיאור מילולי בשפה טבעית:

https://youtu.be/pZsJbYIFCCw


הנה מקצוע מהנדס הפרומפט:

https://youtu.be/Bq-ncjOGeVU


עצות וטיפים לפרומפטים ושיחות עם צ'טבוטים (עברית):

https://youtu.be/R4E_lc_2wtY?long=yes


והסבר מקיף על עבודתם של מהנדסי הפרומפט (Prompt Engineer) בעולם ה-AI:

https://youtu.be/hd7l9F3n4ZM?long=yes
וידאו AI
איך יוצרים סרטים וסרטונים ב-AI?



כלי יצירת וידאו בעזרת בינה מלאכותית גנרטיבית מתפתחים במהירות אדירה. עד לא מזמן זו הייתה המהפכה הבאה של הבינה המלאכותית, אבל מהירות הפיתוח של הטכנולוגיה הזו, כמו כל תחום הבינה הגנרטיבית, היא בלתי נתפסת ולכן היא כבר כאן ולא עוצרת לרגע.

וכך, נוסקים מה שהיו שנה קודם סרטונים של 4-5 שניות באיכות תמונה בסיסית עד נמוכה והבנה בינונית למדי של הפרומפטים (ההנחיות הטקסטואליות שבהן מתאר המשתמש את התוצאה המבוקשת). בתוך שנה הם הפכו לסרטונים מעולים, באיכות תמונה מעולה, היצמדות להנחיות הפרומפט ומאפשרים לבקש זוויות צילום, סוגי שוטים, סוג או ז'אנר הסרט ועוד.

וגם קהילת הקוד הפתוח (ראו בתגית "קוד פתוח") לא טומנת ידה בצלחת. לעומת מודלים מסחריים סגורים ויקרים למשתמש, המודלים שלהם מאפשרים יצירת סרטונים בארכיטקטורה עם שקיפות וחדשנות וללא עלות, תוך אימוץ של טכנולוגיות AI מהחדשניות ביותר, גם בחינם להורדה והרצה על המחשב המשתמש וגם אונליין, בהגבלות בשל העלות שעולה לשתפן כך.

מדהים לחשוב שמה שבעבר צולם באלפי דולרים מינימום לשניה של סרט, נוצר עכשיו בכמה פקודות מקלדת, שמייצרות סרטונים שווי ערך להפקה מורכבת, יקרה, עתירת מקצוענות וכוח אדם, כשלא פעם ביצועי אפקטים מיוחדים ו-CGI, יקרים ומורכבים לצילום, מוחלפים במחי פקודת מקלדת פשוטה ודמיון מפותח של היוצרים.

היום הבינה המלאכותית יוצרת סרטונים מעולים וברמה מטורפת, אפילו על בסיס של תמונות סטילס (תמונות רגילות), שהועלו אליה ונוספה להם הנחייה שאומרת מה "עושים" האובייקטים שבתמונה כשהם "משתתפים בצילומים".

וזה בדיוק מה שמדאיג היום רבים בתעשיית הקולנוע. קשה להימלט מהמחשבה כמה ואילו מקצועות עומדים להיעלם בקרוב מהעולם, מהמסך, הגדול או הקטן. בצל הקדמה הזו עלולים כמה א.נשים לאבד את פרנסתם. החלפתם הצפויה בבינה מלאכותית תהיה כי היא זולה, יעילה, צייתנית וכזו שאף פעם לא חולה, לא עצובה ולא מאחרת, כי הילד שלה מרגיש לא טוב בבית...

אז לצד זה שהבינה המלאכותית מרגשת, תורמת ליצירתיות וגלומות בה אינספור אפשרויות בלתי נגמרות, היא טומנת בחובה גם איומים וסכנות לאנושות ולנו בני האדם. תעשיית הקולנוע כולה עלולה להיות מוחלפת בהדרגה במיליוני רובוטים שקוראים להם AI ואין להם אפילו גוף לחבוט בו. רק אינטליגנציה מלאכותית, שלא מרחמת ולא חומלת, כי היא עושה רק מה שאומרים לה. במקלדת, כן?

הפתרון, כי חייבים לדבר אופטימית שוטפת, הוא ללמוד את הכלים החדשים הללו. יידע כל מקצוען קולנוע שבמקום להיות מוחלף ב-AI, עדיף לדעת AI ולהשתלב בעולם החדש הזה.


הנה Google Veo 2 המוביל:

https://youtu.be/VNWLHAnRc0o


הכלי האינטגרטיבי שעושה תהליך שלם מפרומפט קטן:

https://youtu.be/Aw1TQwkCLQs


מודל וידאו בינתי ישראלי (עברית):

https://youtu.be/CkpLiPWLcHo


אפשרויות הווידאו AI שהולכות ומתפתחות במהירות - הנה Neurawik:

https://youtu.be/1HVkzZiv82Q


Sora רצה להחליף את עשיית הסרטים הרגילה (עברית)

https://youtu.be/kx3H1jFHncY


דברים שרק AI יכול לעשות (ללא מילים):

https://youtu.be/f-Vbm-iQ_Xw


הדרכה ל-Image to Video שהופכת תמונה לסרטון וידאו (עברית):

https://youtu.be/mR3rN8vphC8


קליפ AI של שיר של הביטלס:

https://youtu.be/Z9MZdNrGbM4


כך יוצרים מתמונות בעזרת פרומפט וידאו AI בקלות עם Minimax (עברית):

https://youtu.be/F-gl4E5yo60


כך יוצרים לייב פורטרייט - דיוקן עם מחוות שלכם:

https://youtu.be/kM3KSrPrh9c


קליפ מתמונה בשיטה של Image to video:

https://youtu.be/yCczY9PNeao


קדימון AI מדומה לסרט מד"ב שאולי יצולם:

https://youtu.be/oAIrJP4n5sQ


כך מחליפים פנים לדמויות וידאו ב-Faceswap:

https://youtu.be/vVs0DZ8VyGQ


מינימקס המטורף בווידאו AI:

https://youtu.be/4QXCV_TYKZc?long=yes


הנה Dream Machine של לומה:

https://youtu.be/N_hlfwWtgPQ?long=yes


על סקיצה של ג'ון לנון שהושלמה 40 שנה אחרי מותו עם קליפ משולב דמויות AI:

https://youtu.be/APJAQoSCwuA?long=yes


Magic Hour AI - כלי שיוצר סרטונים עד 60 שניות, שזה הכי הרבה:

https://youtu.be/eSpuvmRhcPg?long=yes


KREA - מודל ליצירת סרטונים AI:

https://youtu.be/OBewafac0Xs?long=yes


MINIMAX - עוד מודל וידאו מדהים מסין:

https://youtu.be/7JZLLxV1AGc?long=yes


כלי וידאו שמייצר ישר סרטון רב-סצנות:

https://youtu.be/BCCUNiToo94?long=yes


כלי הווידאו המומלצים לתחילת 2025:

https://youtu.be/K04zRJ8Vl_s?long=yes


וכך מייצרים סרטי וידאו ארוכים ב-Canva תחילת 2025:

https://youtu.be/tWmVbn4rUd0?long=yes
כלי קוד מבוססי AI
מה עושים כלי מחקר ועיון מבוססי AI?



כלי מחקר מבוססי בינה מלאכותית ג'נרטיבית הם סוג של סוכני AI משוכללים (AI agents) המיועדים לחקר וארגון המידע שאנו צוברים בתהליך המחקרי.

מבין מודלי השפה הגדולים (LLMs) בולטים קלוד ו-Chatgpt שפותחו לכלים מולטי-מודאליים. ככאלה הם מתאפיינים ביכולת ללמוד דברים מטקסטים, תמונות, צילומי מסך ועוד ולשפר את הביצועים עם תוצאות בפלט הכולל טקסטים, קוד, אודיו, וידאו, תמונות והבנה מרחבית.

לצידם יש מודל שפה שהוא יותר מחקרי באופיו וכולל מנוע חיפוש. מדובר ב-Perplexity, כלי שהחל בהתבססות על דאטה מחקרי, בעיקר מ-Google Research. כשהפך להיות הצ'טבוט המחפש הראשון, הוא מתבסס על תוכן עדכני ורלוונטי שהוא מאתר באינטרנט בזמן אמת, עם עדיפות לתמציתיות ולנתוני אמת. בנוסף, פרפלקסיטי שומר על כללי הציטוט המדעי, נותן ציטוטים עם ציוני מקור, מנמק ומקשר את טיעוניו למקורות שעליהם התבסס ומהם שאב את המובאות והתשובות.

יש גם את NotebookLM של גוגל, מעין מחברת חכמה בצירוף שותף ללמידה, שמבין אתכם ועוזר להפיק את המרב מהחומר המחקרי או הלימודי. במקום לבזבז זמן על עבודה טכנית ומשעממת, מעלים אליו עשרות חומרים, כולל טקסטים בהעתק-הדבק, מאמרים, לינקים, כתבות וספרים ועד סרטוני יוטיוב והקלטות קוליות. הכלי, שמתבסס על Gemini 2.0, קורא, מבין ומנתח את כל המידע במהירות ובמקום שתבזבזו שעות על קריאת חומר וכתיבת סיכומים, הוא מייצר לכם בקלות סיכומים חכמים, תובנות, מדריכי למידה, צירי זמן ותשובות לכל שאלה. ניתן לצ'טט או ממש לשוחח עם המחברת כאילו היא עוזר אישי וקולי, לשאול שאלות שתרצו על החומר ולקבל תשובות מדויקות ומובנות.

מרשימה גם היכולת של NotebookLM, להפוך את הידע שטענתם אליו לפודקאסט וגם לשאול שאלות עם מיקרופון ולהיות שותפים מלאים לשיחה עם "המגישים". תארו לעצמכם שתוכלו לקחת את הסיכום שיהפוך להרצאה מוקלטת בקול אנושי לחלוטין, או לסרטון לימודי או מקצועי. זו למידה חווייתית, שיתופית ומעניינת הרבה יותר.

עוד כלי מחקר טובים הם עזרי כתיבת פרומפטים ומאגרי פרומפטים המסייעים לתקשורת יעילה עם מודלים גדולים של שפה. כלים כאלה הם חיוניים למגוון עצום של שימושים, כולל שלל אפשרויות מחקר, כתיבה והפקת תובנות מתוכן גולמי וממקורות בינתיים.

ברמה המדעית יש גם יש כלי בינתי, מעין מודל שפה גדול (LLM) בשם Consensus שהוא בעצם מנוע חיפוש אקדמי מבוסס בינה מלאכותית. הוא עצמו משתמש במודלי שפה גדולים (LLMs) כדי לאסוף, לנתח ולהנגיש מידע מדעי בצורה פשוטה ומדויקת. המנוע של "קונצנזוס" מנתח יותר מ-200 מיליון מאמרים מדעיים, מסכם אותם באופן תמציתי ומציג את הקונצנזוס המדעי, מה הדעה הכללית ביחס לשאלות מדעיות בנושאים שונים. לשם כך הוא משתמש בכלים כמו "Consensus Meter", בו רואים את התפלגות הדעות בשאלה המסוימת ולומדים על "מה חושב המדע" לגביה.

עוד שיטה שהוא נוקט היא "Pro Analysis". שימושיה העיקריים בחינוך ובמחקר הם בסיוע לסטודנטים ולמורים במציאת מאמרים רלוונטיים, יצירת סיכומים מותאמים לשואל, ניתוחים מהירים של ספרות מדעית, סינון מאמרים שלא עומדים בדרישות מדעיות מוגדרות (כמו מתודולוגיה, גודל מדגם או מובהקות סטטיסטית) והפקה של ציטוטים אוטומטיים ודוחות מותאמים.


הנה NotebookLM, כלי המחקר לטעינת חומרים מגוונים ומשימות עליהם (עברית):

https://youtu.be/_vML22ACIRs


הוא יכול לייצר אפילו פודקסט:

https://youtu.be/1jgpsGDUXW4


הצ'טבוט שמצטיין במחקר ובחיפוש - Perplexity (עברית):

https://youtu.be/1MkBWfurQL4


כלי AI מקצועי למחקר מדעי בסקירת ספרות ולמידה ממאמרים:

https://youtu.be/LBzrVEG5qsk


מארינר - סוכן AI והעוזר הגלובלי של גוגל:

https://youtu.be/WJnUWldjJQA?long=yes


הבן של גוגל וקלוד - הנה פרפלקסיטי ששילב את שני העולמות (עברית):

https://youtu.be/33nBpKRWMms?long=yes


כמה כלי מחקר מבוססי AI:

https://youtu.be/Rc9R7T8S1c8?long=yes


ומדריך לעבודה עם NotebookLM:

https://youtu.be/UG0DP6nVnrc?long=yes
מכונות במקום אנשים
מי חשב פעם שאוטוטו מכונות יחליפו בני אדם לחלוטין?



זה היה הרברט סיימון שאמר בשנת 1956 ש"בתוך 20 שנה, מכונות יהיו מסוגלות לעשות כל מלאכה שבני אדם יכולים לעשות."

אז נכון שבאמת מכונות הולכות ומחליפות את בני האדם בהמון תחומים שבעבר נשמרו לידיים אנושיות, אבל זה לא קרה בשנות ה-70 של המאה הקודמת ולמעשה גם היום עדיין לא התממש, לפחות לא כמו שצפה סיימון.

אגב, ההערכה של אותם מומחים, של מתי יחליפו מחשבים את האדם התבוני, הלכה והתרחקה. אם אז נטו לחשוב שזה ייקח שנים ספורות, לאט לאט זה הלך והתארך וההערכות נעשו ריאליות יותר. זה קרה משום שהמומחים הלכו והבינו כמה מורכב לייצר מחשב תבוני, ברמה של בן אדם חושב.

בתחומים רבים החליפו היום תוכנות חכמות, רובוטים מתוכנתים ואלגוריתמים מתוחכמים להפליא, את העובדים האנושיים שעבדו לפניהם, אבל הקצב עדיין זוחל יחסית לנבואה ההיא.

כך שגם אם נראה שנצטרך להמתין עוד קצת עד שרובוטים חכמים ומצוידים בבינה מלאכותית יחליפו את הידיים והראש של בני-אדם כמעט לגמרי, זה עלול לקרות בעתיד בתחומים רבים.

נראה שזה ייקח עוד זמן מה, אבל מצד שני מתחילת 2023 נראה שהבינה המלאכותית והלמידה העמוקה החלו פולשות גם לעולם של היוצרים ובגדול ולאיים על הקריירה שלהם.

כלי בינה מלאכותית גנרטיבית כמו ChatGPT ו-DALL-E של OpenAI, או המתחרה Stable AI, מציגים יצירות בינה מלאכותיות, זוכים להצלחה בעולם היצירה והאמנות ומעוררים את הדיון הציבורי.

אפליקציות כמו Lensa AI ממנפות את ה-Stable Diffusion בקוד פתוח ויוצרות ברגע ציורים ואוואטרים ברמה של אמנים מקצועיים, הדבר מתחיל להשפיע על האמנים עצמם.

האופן שבו מחוללי אמנות AI (בחיוך נכנה אותם "מחוללאי") יכולים להחליף יוצרים ולמסמס את פרנסתם הוא די ברור. אבל דברים מסוימים אסור שיימסרו לעולם לידיהם של רובוטים ומכונות. החל מתחומים שמחייבים אתיקה וחשיבה מוסרית ועד נושאים שבהם מכונות עלולות להגיע ליכולת של השתלטות ואף למצב של לוחמה במין האנושי.

אם נהיה תלויים בהם שם, אזי יש סיכוי שהמין האנושי ייפגע אנושות ואף יושמד לחלוטין. או בלשון של אחד המומחים הגדולים בתחום ה-AI, הפרופסור מרווין מינסקי מאוניברסיטת MIT, שאמר שבסוף "זה יהיה מזל אם הם (הרובוטים) יתנו לנו להיות חיות המחמד שלהם..."


הנה סרטון שמתאר החלפת עובדים ברובוטים במפעלי פוקסקון שמייצרים סמארטפונים:

http://youtu.be/Vd5R7BHcFfo


תיאור של האבטלה החדשה, שנוצרת כתוצאה מטכנולוגיה שהולכת ומחליפה בני-אדם (עברית):

https://youtu.be/jM00QpOysj8?t=44s


כך הציג צ'ארלי צ'פלין בחיוך מריר את מכונת ההאכלה שתאכיל את העובד על פס הייצור, כדי לחסוך זמן:

https://youtu.be/_OKs2MWaBcA


ובחיוך - העתיד של האבטלה בה יחליף AI עובדים (עברית):

https://youtu.be/DeiODKYywSQ?long=yes

מחוללי בינה מלאכותית

טפשת הרשת
מהי טפשת ה-AI שתפגע באיכות התוכן והקוד?



אחת התופעות שמתחילות להתגלות בשנים האחרונות, מאז הפריצה של הבינה המלאכותית הגנרטיבית, היא של טפשת שגורמת הבינה הגנרטיבית למידע ולתוכן באינטרנט.

ברור שהשימוש הכל כך קל ב-Generative AI מקל על המשתמשים, אבל ידוע לכל שיש לבדוק את המידע שהיא יוצרת לפני שמחזירים אותו לציבור כמידע שיצרו בני אדם. מסתבר שרבים לא מבינים את החולשות והפגמים שעדיין מלאים בהם מודלי השפה, אותם מודלים גדולים (LLMs) שעושים היום את הידע. אם אלה תכנים שהתקבלו מקלוד או ChatGPT, רכיבי AI שנועדו לייצר קוד בתכנות, וידאו או תמונות גנרטיביות שיוצרים מנועים שונים ועוד.

התופעה הזו כבר פוגעת באיכות המידע באינטרנט, לפי בדיקות אובייקטיביות שעורכים באופן תקופתי לאיכות הרשת. מסתבר שלא זו בלבד שבני אדם מסתמכים על מידע שחלקו לא מדויק בלשון המעטה, אלא שהקרולרים עצמם, אותן תוכנות שאוספות את המידע מהרשת לצורך אימון, הזנת ועדכון מודלי השפה הגדולים - מסתבר שהם עצמם מסתמכים על המידע הגרוע הזה. ובדיוק כך, הוא חוזר למודל השפה ונכנס לתוכן שמקוטלג לטוקנים (Tokens) ובחזרה לדאטה שעליו הם מסתמכים. התוצאה היא שיותר ויותר מידע לא בדוק ולא אחראי, שהגיע מלכתחילה לרשת ממודלי שפה לא בשלים מספיק, חוזר ומפרה את המודלים הבוגרים, שאמורים לקבל מידע אנושי ואיכותי ולא תמיד יודעים לאתר את השגיאות שבו.

גם בעולם העסקים והארגונים יש כבר החמרה. הירידה באיכות התוכן שבאינטרנט נובעת מהשימוש הגובר והולך בחומר בינוני, שהגיע מהבינה המלאכותית הגנרטיבית, אך לא בוגרת, של הדור הראשון. כבר עם ההשקה של ChatGPT ב-2022, גילו מנהלים את הצ'טבוט שמאפשר להם ליצור חומרים באמצעות בינה מלאכותית יוצרת (generative AI) וחיפשו דרכים להשתמש בהם, במקום בעבודה של עובדים או חברות מיקור החוץ שבהם השתמשו בעבר. מעט מאותם מאמצים התגלו כיעילים ומרביתם נשארו בפוטנציאל יותר מאשר החליפו עובדים.

אך בתחום התכנות זה כן קרה. מסתבר שמודלים כמו CoPilot, Claude ואחרים מייצרים קוד במהירות ומחליפים את הג'וניורים, המתכנתים הצעירים בתעשייה. לפי סקרים שמתפרסמים בעולם נראה שקצב האימוץ של המנועים הללו הוא גבוה, במיוחד ביחס לזמן הקצר שבו הם פועלים. אלא שבסוף 2024 מתחיל להסתבר שכ-40% מהמתכנתים בעולם משתמשים בכלים כאלה ומשגרים קוד שלפחות בחלקו הוא פחות מוצלח. קוד זה חוזר ו"נלמד" על ידי המודלים ומוריד את איכות התכנות שלהם באופן מתמשך, שעלול אף להחמיר.
כלי קוד מבוססי AI
איך התכנות יורד לעם בעזרת בינה מלאכותית יוצרת?



בימי AI אלה, של פברואר 2025, נראה שאנו רואים את השינוי בכתיבת קוד בכלל ובתכנות של אפליקציות לסוגיהן בפרט.

וזה לא ממש תכנות, עם כתיבת קוד וחלוקה למסמכים שיוצרים תוכנה, אלא יותר תהליך של חשיבה וחלוקת הוראות. כולנו יכולים לחשוב על רעיון, לנסח אותו כפרומפט, אולי גם לדמיין ולצייר מסכים, להציגם ל-AI, לראות קוד ואת התוצאה, לאשר או להציע תיקונים, לשפר את המודל ולראות את התוצאה משתפרת.

גם אם זה נשמע בלתי אפשרי, זה בדיוק מה שהבינה היוצרת מאפשרת כיום, כמעט לכל אחד, כולל מי שלא למדו מעולם לקודד ולתכנת. אחד מגאוני ה-AI של הדור החדש, אנדריי קרפאטי (Andrej Karpathy), מסביר שכלי ה-GenAI משנים את אופן פיתוח התוכנה מהיסוד וקורא לזה “תכנות וייב” (Vibe Coding).

תכנות הווייב פירושו תכנות שלא בקוד אלא של מפתחים שמתרכזים ברעיונות הגדולים ונותנים ל-AI לטפל בשאר - מהקוד והאיטרציות (שפירושן שיפור וניסוי שוב ושוב), דרך הפרטים הטכניים, הטיפול בבסיס הנתונים (Database), ב-API ובהעלאת הכלי לאונליין (Deployment).

ומדובר בשינוי של כל החוקים שהכרנו. המעבר הזה מכתיבת הקוד לפתרון בעיות באמצעות חשיבה מדויקת ככל האפשר, הנחיות ל-AI, עיצוב מסכים והעלאתם כטיוטות עיצוב לבינה, כל אלו הם חלום שמתממש. משמעותם הפשוטה היא דמוקרטיזציה של עולם פיתוח התוכנה.

והאפשרויות החדשות הללו מאפשרות עכשיו גם לאנשים ללא רקע תכנותי או היכרות והבנה בקוד, להגשים את רעיונותיהם - על ידי יצירה של תוכנות מקוונות, אפליקציות או כלים שונים, באמצעות כלים בינתיים וטכנולוגיים, המופעלים על ידי אדם ולידו בינה מלאכותית, שמקבלת ומבצעת הוראות.

אז המרחק, שבעבר היה גדול מאוד, בין הרעיון למימושו, תלוי עכשיו במשתמש ורק בו. כלים רבים לקידוד מבוסס פרומפטים יש כיום והם משתכללים מיום ליום. המוח האנושי יידע להנפיק מהם גם שיפורים אישיים ומרהיבים לחיים המודרניים וגם כלים חדשים ומעולים לשימוש בעתיד.


הנה הארטיפקט של קלוד, שאחרי קידוד ניתן לשתף את יצירתכם ב-Publish לאחרים:

https://youtu.be/vUdNaAAc4FY


שיעור תכנות ללא תכנות בכלי Lovable:

https://youtu.be/gqsZGxuymTk?long=yes


Websim.ai הוא כלי קוד שמשלב את העיצוב בקידוד וניתן לתכנת בו ללא תכנות:

https://youtu.be/HCw4jCbLgMY


Replit הוא כלי שבו ניתן לקודד גם בסמארטפון:

https://youtu.be/Cmq3TrS3ccU


כלי קוד מבוססי אינטליגנציה מלאכותית:

https://youtu.be/3cVJxRka4yM


השוואה של 3 מודלי שפה LLMs במהירות יצירת קוד למטלה זהה:

https://youtu.be/_JS-LkBrsk8


יישום של תוכנה שפותחה כך, ללא כתיבת קוד:

https://youtu.be/lkom9ufvxD4


איך ChatGPT בניתוח קוד? (עברית)

https://youtu.be/Z46pqHFuKHs


רפליט הוא כלי קוד בינתי מתקדם יותר:

https://youtu.be/FrMy3Bq7TZA


מדריך מתחילים לתכנות עם Cursor AI:

https://youtu.be/ocMOZpuAMw4?long=yes


ומדריך לעבודה עם Windsurf:

https://youtu.be/4nCMdQadE08?long=yes
רובוט מצייר
האם רובוטים יכולים לצייר?



בהחלט. אמנם לרובוטים אין דמיון והיצירתיות שלהם היא רק בתחילת הפיתוח שלה, אבל רובוטים כבר מציירים.

כי על אף שהמרכיב היצירתי אצל הרובוטים הללו הוא חלקי והם אינם מסוגלים ליצור אמנות מורכבת ומופשטת כמו האמנים האנושיים, עולם הבינה המלאכותית מבטיח שרובוטים בעתיד יוכלו להגיע לרמות מדהימות של יצירה והמצאה, גם בתחום האמנות.

העניין הזה מעלה, אגב, לא מעט שאלות חשובות, הן אמנותיות והן פילוסופיות. אחת הראשונות שבהן תהיה מי ייחשב ליוצר של יצירת אמנות שיצר רובוט - האם האמן שיקבל את הכבוד יהיה יוצר הרובוט או שבעתיד נעמוד בתור לתערוכה מעבודתו של X512V, הרובוט של חברת גוגל.

אגב, את הכסף יקבלו בכל מקרה בעליהם החוקיים של הרובוטים, כך שזה לא עניין כלכלי. יוקרה וכבוד אולי לא ואולי כן, אבל הכסף בכל מקרה יגיע לידיהם.


הנה פול, רובוט פשוט שמצייר דיוקן של מי שמתייצב מולו:

https://youtu.be/bbdQbyff_Sk


אהרון, שהוא רובוט יצירתי שלא מצייר את מה שהוא רואה, אלא גם רעיונות ויצירות אישיות:

https://youtu.be/-U-lQYwzFAQ?t=15s


אולי עוד לא אמן אבל שוליה של אמן או משכתב - בינה מלאכותית נוסח "DALL-E" כבר יכולה לצייר דיוקנאות מתיאור מילולי בשפה טבעית של מה שיכיל הציור:

https://youtu.be/qTgPSKKjfVg


וכן - רובוטים יכולים להיות יצירתיים, בערך... (עברית)

https://youtu.be/Rh9vBczqMk0
כלי קוד מבוססי AI
מה היתרון של כלי פיתוח קוד מבוססי AI?



מחשב מתכנת לבדו? - באופן מסוים כן. כי כלי קוד מבוססי בינה מלאכותית (AI-based code tools) מאפשרים לשלב את הרעיון או המומחיות האנושית עם היכולות של הבינה המלאכותית, כדי לפתח תוכנה ולעשות זאת ללא קידוד של המשתמש או באמצעות שיתוף פעולה בין המשתמש ל-AI.

קידוד מבוסס AI מתבסס על בינה מלאכותית ככותבת הקוד. כתיבת הקוד מתבססת על מודל שפה שאומן על נתוני דאטה עצומים ולמד קידוד.

המשתמש מאפיין את המוצר, אם זה אתר אינטרנט, תוכנה או אפליקציה לטלפון ומתאר אותו באמצעות פרומפט, הנחייה שהוא כותב לבינה היוצרת בלשון טבעית, כלומר שפה רגילה, שפת יום יום וללא צורך בידע בתכנות.

החיבור בין הרעיון והשכל האנושי ובין האינטליגנציה המלאכותית מאפשרים ניהול וביצוע משימות פיתוח, בשיתוף פעולה ועצמאות גם יחד.

באמצעות תכונות של AI מקודד ניתן לתאר ל-AI את המטרה, לקבל קוד, להנחות אותה כיצד להתקדם בפתרון בעיות או באגים בקוד ולהוביל ביחד לקוד איכותי ולמימוש הרעיון.

ה-AI המקודד מודע לפעולות המשתמש בזמן אמת ומציע יתרונות אדירים. הוא מסוגל לערוך קבצים מרובים במהירות אדירה, להציע פקודות, לזהות בעיות ולנפות באגים.

כלי הקוד המשובח "Windsurf AI", למשל, מפעיל סוכני AI מובנים, יחד עם מעין "טייסי משנה" מונעי בינה מלאכותית, שמטרתם להטעין את הקוד ולהפוך את הקידוד למהיר ואינטואיטיבי יותר.

בעצם, Windsurf ודומיו, דוגמת Cursor AI שהיה חלוץ הכלים הללו, הם מעין סביבת פיתוח (IDE) מהדור החדש, המשפרות את הפיתוח בעזרת אוטומציה חכמה ומציעות עריכת קוד בסביבה מרובת קבצים. וינדסרף עושה זאת, בין השאר, בעזרת כלי שנקרא Cascade ומצטיין במודעות עמוקה לקונטקסט, ההקשר הכל כך בסיסי ומרכזי בבינה המלאכותית היוצרת (Generative AI).

כלי נוסף וקל הרבה יותר הוא Websim AI, המאפשר לתאר אתר או אפליקציה, או סתם לתת שם דומיין מדומה, והיא יוצרת אותם. מכאן אפשר להנחות אותה בצעדים, איטרציות, מה שמאפשר לדייק אותה, לשפר, לשדרג ולבנות הלאה.


הנה כלי קוד מבוססי אינטליגנציה מלאכותית:

https://youtu.be/3cVJxRka4yM


AnyChat מצויד בדיפסיק וסמבה נובה לקידוד פשוט:

https://youtu.be/7BIVWQnAOLk?t=2m54s


השוואה של 3 מודלי שפה LLMs במהירות יצירת קוד למטלה זהה:

https://youtu.be/_JS-LkBrsk8


השוואת 5 כלי קוד מובילים והמנצח המפתיע:

https://youtu.be/WVhJSUtGbYM


יישום של תוכנה שפותחה כך, ללא כתיבת קוד:

https://youtu.be/lkom9ufvxD4


Websim.ai הוא כלי קוד קל מאוד וקסם ללא תכנות:

https://youtu.be/HCw4jCbLgMY


איך ChatGPT בניתוח קוד? (עברית)

https://youtu.be/Z46pqHFuKHs


רפליט הוא כלי קוד בינתי מתקדם יותר:

https://youtu.be/FrMy3Bq7TZA


לקודד אפשר גם בסמארטפון:

https://youtu.be/Cmq3TrS3ccU


מדריך מתחילים לתכנות עם Cursor AI:

https://youtu.be/ocMOZpuAMw4?long=yes


ומדריך לעבודה עם Windsurf:

https://youtu.be/4nCMdQadE08?long=yes


ChatGPT
אילו מקצועות ייפגעו מהבינה המלאכותית הגנרטיבית?



אנו בעידן הצ'אט בוט המדהים של Open AI שנקרא ChatGPT. ה-GPT הוא קיצור בראשי תיבות של Generative Pre-trained Transformer. הצ'ט בוט הזה מוביל שורה של פיתוחים דומים ולמעשה הוליד, כמעט יש מאין, עולם חדש של טכנולוגיות. יצירתיות, חדשניות ומדהימות.

העניין הזה כבר הוליד פועל חדש בעברית, כשהמערכות הללו מתחילות לג'נרט (מלשון generate), כלומר לייצר תוכן באופן אוטומטי על ידי מחשבים ומודלי שפה תבוניים, דוגמת ChatGPT, Claude, Gemini ודומיהם.

מודלי השפה הללו מתקדמים במהירות והמירוץ לפתחם ימשיך. במקביל לעבודה המדהימה שעושים המפתחים של O.AI יוצאים כל הזמן כלים מתחרים, כולל של ענקיות כמו גוגל, פייסבוק ואמזון, העובדות על מוצרים דומים.

ביחס לכל מוצר AI שהיה נגיש לציבור בעבר, ChatGPT ומקביליו עושים דברים מדהימים, מהפכניים וכמעט בלתי נתפשים במהירות שהם מבוצעים.

אז נכון שיש לצ'אט הזה ולעמיתיו עוד דרך עד שנוכל לסמוך עליו ועל הידע והמידע שהיא מציע לנו בכל התחומים, אבל בתחומים מסוימים הם כבר כאן ועם יכולות בינה מלאכותית שהן די מהפכניות. בעניינים אחרים המרוץ לבשלות ככל הנראה ימשיך והם יגיעו די מהר...

קשה אולי להאמין שהמקצועות שאנו מכירים ייעלמו לגמרי. וגם אלו שאכן ייעלמו - זה לא יקרה מיד, אבל זה תהליך שיימשך, תהליך בו מקצועות עבודה יהפכו יותר ויותר למקצועות של פיקוח על הבינה המלאכותית שעושה אותה.

כשהאדם מפקח על עבודת המכונה, הוא יצטרך להיות בתחום כדי להיכנס לפעולה כשהמכונה נתקלת בבעיה שהיא לא יודעת לפתור, לא מתפקדת, מתקלקלת וכדומה.

אז אילו סוגי מקצועות ייפגעו מהבינה? - ההערכה היא שבעיקר מדובר בעבודות הקשורות בשפה. כל מי שמשתמשים בעבודה שלהם בשפה, באופן ישיר ומשמעותי ולא הכרח ביכולות אחרות, פיזיות, ליטרלי שריריות, יכולים לשער שהבינה המלאכותית תוכל לבצע במעלה ההתפתחות שלה את מלאכתם.

עיתונאים, מידענים, תחקירנים, אנשי שיווק, פרסום ויוצרי תוכן, מתכנתים ואפילו מוסיקאים - אצל כולם השפה היא כלי מרכזי בו הם עושים שימוש בליבת שיטת העבודה. אז זה לא שלא יהיו עיתונאי-על, או מוסיקאים אנושיים - הם פשוט יהיו מעטים ומעולים. השאר ימצאו את עצמם מוקפים באנשים שאינם אנשי מקצוע, אך למדו לנצל כלי AI ולייצר תוצרים שייתחרו בשלהם.

גם אנשי מדיה צריכים לדעת שהמקצועות שלהם יעברו שינויים משמעותיים ולמעשה כבר עוברים. עורכי סרטים, צלמים, יוצרי סרטים, מקליטים, עובדי אולפנים, טכנאי סאונד, עורכי אפקטים ומעצבים גרפיים - המקצועות הללו כבר עוברים שינויים וכדאי שיתעדכנו בהם היטב כי כך יוכלו להשתנות עם התחום ולהתבגר לחידושי ה-AI שייכנסו אליו, למצוינות והובלה בו.


הנה השפעת הבינה המלאכותית על העולם האנושי שלנו (מתורגם):

https://youtu.be/RzkD_rTEBYs


יחליף את המורים? - למה בחינוך מודאגים ממודל השפה החדש?

https://youtu.be/Fn8jDanbf0c


האם הג'י פי טי יחליף למשל את הסופרים ויכתוב ספרים, כמו שהוא מייצר היום ספרי ילדים (עברית):

https://youtu.be/sDjFRAP0Szg


ומה הוא עושה לתלמידים והמורים (עברית):

https://youtu.be/vmmUiyeGNB8?long=yes
מהם מודלי שפה גדולים, או LLM?



מודל שפה גדול (LLM), קיצור של Large Language Model, הוא ה"מוח" שמפעיל צ'אטבוט עוצמתי, כמו הצ'אטבוט ChatGPT, המייצר תוכן לבקשת המשתמשים ועושה זאת באמצעות מודל השפה הגדול GPT-4 ואחרים.

את התוכן מייצר הצ'אטבוט מדאטה עצום, כמות מידע אדירה שנשאבה מהאינטרנט ובאמצעותה אימנו את מודל השפה שמפעיל אותו. מודלי השפה GPT-3 ו-GPT-4, למשל, הם שמפעילים את הצ'אטבוט הכי מפורסם ChatGPT.

יש שאומרים שמודל השפה בעצם הוא לא יותר ממחולל מילים סטטיסטי. הם צודקים אבל גם טועים. כי מודל שפה יכול לחשב מצוין הסתברות של הופעת מילים שונות בכל משפט וכך לייצר משפטים חדשים, מילה אחר מילה, בשפה שבה הוא אומן על ידי המפתחים שלו. אבל זו דוגמה בלבד ואפילו קצת מטעה. כי סטטיסטיקה זה לא הכל וכנראה לא לגמרי המהות של העניין. המוח של מודל השפה, האופן שבו הוא בנוי והתובנות והביצועים שהוא יכול לנפק, הם משמעותיים הרבה יותר.

מודל כזה הוא תת-תחום של למידה עמוקה ומבוסס על רשת עצבית מלאכותית הבנויה בצורה דומה למוח האנושי. הרשת הזו היא בעלת כמות אדירה של פרמטרים, לרוב מיליארדים. הפרמטרים הללו הם ערכים מספריים שמסייעים לאלגוריתם ללמוד.

עוד ביטוי לגודלו הגדול של המודל הוא באימון שלו על מאות מיליוני מילים, בכמויות ענק של טקסט לא מתויג, בשיטת למידה שאינה מסתמכת רק על דוגמאות אנושיות, או מה שנקרא "למידה בפיקוח-עצמי".


#איך זה בדיוק עובד?
נניח ששאלתם שאלה, מודל השפה הגדול מניח את נוסח השאלה על שולחן הטיפולים שלו ובודק בדאטה שלו, במידע העצום שהוא אגר והמיר לקוד מתמטי (ראו אח"כ בתגית" טוקנים"), מה המילה שהכי סביר (מבחינת הסתברות) שתתחיל את התשובה. ואז הוא בודק מה המילה עם ההסתברות הכי גבוהה להופיע אחריה וכך הלאה. זה ייתן לו את התשובה הסבירה ביותר לשאלה.

למה הכי סבירה ולא הכי טובה? - כי הסתברות היא לעולם לא מושלמת וזו בדיוק הסיבה להזיות שנקבל לא פעם ממנועי בינה מלאכותית. אגב, אם תבקשו ממנו לבדוק את תשובתו, כל LLM ימצא ויפרט את שגיאותיו וגם יציע לתקן את המענה שנתן ובתיקון זה כבר יהיה הרבה יותר טוב.

ה-LLM משתמש בייצוג מתמטי של שפה טבעית באמצעות הסתברויות. כל מדען נתונים יאשר שהבסיס של מודלי שפה הוא היכולת שלהם לחשב הסתברות לכל משפט בשפה שבה הם אומנו ומהיכולת הזו נובע חלק משמעותי ביכולת שלהם לייצר משפטים חדשים, מילה אחר מילה.


#מודלי השפה הגדולים והבינה הג'נרטיבית
מודל השפה הגדול הוא בעצם הבסיס למהפכת הבינה הגנרטיבית שפרצה לחיינו בשלהי 2022-תחילת 23. מודלי השפה הגדולים הללו מסמנים קפיצת דרך של ממש ולמעשה הכניסו אותנו עמוק אל תוך העתיד.

הייתה זו IBM שפיתחה את אחד ממודלי השפה הראשונים. הוא נקרא ווטסון, על שם תומאס ווטסון, מייסד IBM. יש גרסה שאומרת שהוא קיבל את שמו משמו משם העוזר של שרלוק הולמס, ווטסון. מודל כזה, ממש כמו אותו עוזר, תמיד מסייע בחקר ובתשובות שונות, כיום של רבים ואצל שרלוק, לצרכי החקירות של הבלש הנודע.

מצוידים במודלים החדשים, הצ'אטבוטים המרשימים, כמו Claude ו-ChatGPT, מסרבים להיות לכם לווטסון. במקום זאת הם מפותחים כך שיהיו המוח, כלומר השרלוק שלכם, כשאתם וכמה זה אירוני, בתפקיד הווטסון או העוזר שלהם... אבל גם הלקוחות.

מודל שפה הוא שמאפשר לנו לבקש ממנו לסכם טקסטים, לענות על שאלות, לצייר או בעצם לייצר תמונות ו"צילומים", לחבר שירים, ליצור סרטונים או לכתוב קוד.

אז מודלי שפה גדולים אפשרו את קפיצת הדרך המדהימה של מהפכת ה-AI. אמנם הם רחוקים מלהיות מושלמים לחלוטין ועדיין פה ושם מקלקלים את ההתפעלות עם ההזיות המוכרות האלה שלהם, עובדות שגויות, מידע לא רלוונטי או מופרך ואפילו עלבונות נדירים. ומה שלא פחות מרגיז לעתים הוא הביטחון המלא שבו הם כותבים או מדברים אותן, שזה בדיוק מה שהופך את חשיפת ההזיות ובדיות הללו לכל כך קשה ומסוכנת...

כיום, המודלים הללו הולכים ומאפשרים צמיחה של עולם חדש, עולם סוכני ה-AI. הם ממוקדים בביצוע משימות ספציפיות, תגובה לסביבה ועוד תכונות מבטיחות. הכירו אותם בתגית "סוכני AI".


הנה מה שעושים המודלים, מנועי השפה הגדולים (מתורגם):

https://youtu.be/X-AWdfSFCHQ


כך פורצת מלחמת עולם ה-AI הראשונה:

https://youtu.be/nJjuYTpHQEE


מהו LLM?

https://youtu.be/iR2O2GPbB0E


המודל השולט בינואר 2025 - DeepSeek R1 הסיני:

https://youtu.be/hupQ97Or3jw


השוואת הצ'טבוטים הטובים, מנועי השפה הגדולים בסוף 2024 (עברית):

https://youtu.be/NanvGTQeO-g


כך פועל מודל השפה הגדול LLM:

https://youtu.be/iR2O2GPbB0E


כך בנויים ופועלים מודלי השפה הגדולים:

https://youtu.be/5sLYAQS9sWQ


יש להם גם חסרונות:

https://youtu.be/Gf_sgim24pI


הסבר מעמיק על מודלים גדולים של שפה ומה שהם הובילו (עברית):

https://youtu.be/-NIsUKUnxhA?long=yes


הפרמטרים והטוקנים באימון מודלים כאלו:

https://youtu.be/r17HV0TzAWw?long=yes


ובאופן סטטיסטי - כך פועל LLM:

https://youtu.be/LPZh9BOjkQs?long=yes
מהם מנועי תמונות ובינה ויזואלית ב-AI?



הבינה המלאכותית היצירתית (GenAI) כמו DALL-E היא מערכת המסוגלת לייצר תמונות ודימויים ויזואליים דמיוניים, המבוססים על פרומפטים - תיאורי מלל, אינפוטים טקסטואליים שכתב והזין לה המשתמש.

הכל הוא חלק מטכנולוגיה שנקראת "ג'נרטיב AI". זו בינה מלאכותית שבמקום לחשב ולנצח במשחקי טריוויה הפכה ליוצרת AI, לציירת, צלמת ועוד כל מיני סוגי אמנים - אבל במקרה שלה - תמיד באינטליגנציה מלאכותית.

באמצעות פרומפטים, תיאורים מילוליים דוגמת "אביר ימי-בייניימי עשוי מחצילים" או "מגדל מודרני בנוי על שריון של צב בסגנון פיקאסו" מייצרת המערכת תמונות וציורים מרהיבים ואפילו מדהימים.

ליצירת התמונות מהטקסט אחראית הבינה המלאכותית המבוססת על למידה עמוקה, מערכת הלומדת בעצמה רשתות נוירונים מלאכותיות, על סמך דפוסים שהיא מאתרת עצמאית, במיליוני תמונות וציורים המוזנים אליה על ידי המפעילים שלה.

להישג המקורי של DALL-E קמו די מהר מתחרים איכותיים לא פחות ואף יותר. הם מציעים עולם חדש וחסר תקדים של ציירים בינתיים, שרק ממתינים לבקשות מהמשתמשים ומזדרזים לצייר מבחר טיוטות, מהן יכול המשתמש לבחור את התוצר הסופי שמועדף, שיבוצע באיכות גבוהה.

איש לא יודע בדיוק כיצד המנועים השונים פועלים, אבל זו עבודה מדהימה של למידה עמוקה שמעבדת בעצמה את הדאטה ממיליוני תמונות ומלמדת את עצמה לצייר ולפרש את הפרומפטים לפיקסלים ותמונות.

התוצאות של DALL-E 2 היכו די מהר גלים בעולם הבינה המלאכותית ותחרות של חברות ומפתחי קוד פתוח יצרו גם הרבה שיפורים, הן באיכות הטכנית של התמונות והן ביכולות האמנותיות. כך למשל הולכות התמונות ונעשות מפורטות, הרזולוציה גדלה, יכולות הריאליזם, עבודת הצל והתאורה, השימוש במרקמים וציור הנראה כמעט טבעי לחלוטין. השטח מלא במודלים שבראשם מידג'רני, אידיאוגרם ו-Flux, המודל בקוד פותח שמייצר תוצרים שומטי לסתות.


הנה כלי Gen AI מצטיין ליצירה ויזואלית:

https://youtu.be/XZjaHJP0PQE


באיזה כלי לבחור לכל צורך? (עברית)

https://youtu.be/a5wUS6SQ0us?t=1m47s


"דאל-E" שכבר יכולה לצייר דיוקנאות מתיאור מילולי בשפה טבעית של מה שיכיל הציור:

https://youtu.be/qTgPSKKjfVg


על היכולת המופלאה של דאלי ליצור אמנות:

https://youtu.be/hiSgpZUAy2c


הסבר אמנות ה-AI:

https://youtu.be/alJdw4JDJ4o


מנועי יצירת תמונות מתחרים:

https://youtu.be/rGbNJrywLhk


גם היהדות ואפילו החרדית מקבלת אפשרויות שהולכות ומתפתחות (עברית):

https://youtu.be/KR29znIp2LU


ה"אאוט פיינטינג" של דאלי, בו הוא מרחיב תמונה:

https://youtu.be/G-Wsh1vUeVQ


קבלו משפר פרומפטים ליצירת תמונות (עברית):

https://youtu.be/HLhRFaXQ0vQ


מדריך להרחבת תמונות:

https://youtu.be/V1KLG159A2s


קליפ שכולו תמונות שנוצרו ממילות שיר של קינג קרימזון:

https://youtu.be/VR3AWdyVVdU


למה יש לבינה כל הזמן בעיה עם אצבעות?

https://youtu.be/24yjRbBah3w


גם למחוללי תמונות מעולים כמו מידג'רני יש בעיות (עברית):

https://youtu.be/xUpUhHsAWlg?long=yes


הסבר מעמיק וארוך על יצירת תמונות גנרטיבית (עברית):

https://youtu.be/aHPFq-Q6JQ0?long=yes


ויוצר רשת שחודש שלם העלה לרשת החברתית תמונות אושר ואווירה שיצר AI - ואז גילה לעוקביו את האמת:

https://youtu.be/FRClNMC_z-s?long=yes
מהם סרטוני דיפ פייק ומה הבעיה בהם?



דיפ פייק (Deep fake או Deepfake) הוא שמה של טכנולוגיית וידאו, מבוססת בינה מלאכותית (AI), המאפשרת לייצר מציאות שנראית אמיתית ומבוססת על אנשים אמיתיים, אך לא התרחשה מעולם.

זה נעשה על ידי לקיחת תמונות, סרטונים וקולות ושינוי שלהם באמצעות AI, באופן שמאפשר לייצר תכנים דומים, הנראים אמיתיים, אך מעולם לא קרו, התרחשו או נאמרו באמת.

טכנולוגיה זו הולכת ותופסת בשנים האחרונות את מקומה ברשתות החברתיות שבאינטרנט.

העיקרון המוביל בסרטוני ה-Deepfakes הוא שחזורי פנים מדויקים, המולבשים על סרטוני וידאו, תמונות או אנימציה ומייצרים מראות הנראים אמיתיים לגמרי.

בסרטונים, למשל, מדובר על החלפת פניו של מי שצולם בווידאו, באמצעות למידת מכונה. התוצאה של זה היא יצירה בקלות של סרטוני וידאו המציגים אנשים העושים מעשים שמעולם לא עשו באמת או אומרים דברים שלא נאמרו.


#תולדות ה"דיפ פייק"
את לידת הטכנולוגיה הזו סימנה אפליקציה בשם FakeApp, שפותחה בסין על ידי מיזם בשם MoMo. המיזם היה ככל הנראה החלוץ בכך שאפשר להמונים להדביק את פניהם לזמרים, שחקנים ודמויות ממשחקי וידאו. לראשונה ראו המשתמשים שמספיקה תמונה אחת של פניהם, כדי שהאפליקציה תדביק ותמפה אותה באופן אוטומטי על גבי הקליפים שהיא מציעה.

בשנת 2016 כבר פותחו מערכות למידת מכונה אוטומטיות וחזקות יחסית, כאלה שלומדות ומשתפרות בעצמן, ככל שהן מופעלות. המערכות הללו חזרו שוב ושוב על תהליכי יצירת Deepfake וככל שהתהליך נמשך, לאחר מיליוני פעמים, הן שיפרו את התוצר. בשנה זו יצאו כבר תוכנות שאפשרו זאת גם על מחשבי PC ביתיים וחלשים יחסית.

את שמה קיבלה הטכנולוגיה הזו בשנת 2017, ממשתמש באתר Reddit שכינויו "זיופים עמוקים". הוא טבע את המונח לאחר שערך כמה סרטונים פורנוגרפיים ובהם הוא הטמיע, באמצעות טכנולוגיית "למידה עמוקה" (Deep learning), את פניהם של ידוענים ומפורסמים שונים.

את פרסומה העיקרי חייבת הטכנולוגיה הזו לסרטוני "פייק ניוז", חדשות כזב, שיצרו תומכי פוליטיקאים בארצות הברית, במהלך קמפיין הבחירות לנשיאות 2020. לפתע החלו להופיע סרטונים בהם ממליצים ומסבירים נשיאי עבר ומשפיענים פוליטיים שונים על דברים בדויים ומנוגדים לאמת. על התחום הזה שווה לקרוא בתגית "פייק ניוז".


#למה משמשים סרטונים אלו?
טכנולוגיית ה-Deepfake משמשת ליצירת תוכן וידאו המציג מציאות בדויה לחלוטין, דברים שנראים ונשמעים אמיתיים ומצולמים, אך למעשה לא התרחשו מעולם.

ביטויי הסרטונים הללו, שזכו לכינוי Deepfakes, הם רבים. הם מתחילים מפוליטיקה בה מיוצרים כך נאומים שלא ננאמו ומעבירים מסרים בדויים מפיהם של ידוענים, מנהיגים ומפורסמים ומסתיימים כיום בסרטונים "פסאודו-תיעודיים", המציגים מעשים, מראות וטקסטים מדוברים, הנראים אמיתיים לחלוטין אך מעולם לא צולמו והוקלטו.

מדובר בעניין מהפכני. מעולם לא עמדה טכנולוגיה כה חזקה וריאליסטית לטובת תעשיית השקר, או בשמה המכובס, תעשיית ה"פוסט אמת".

בעולם של ה-Deepfakes השתפרו האפשרויות ליצירה והפצה של שקרים פראיים. הן כה מרשימות, עד כדי כך שמיליונים "נופלים בפח", מאמינים לסרטוני הדיפ פייק הללו ומשנים בגללם את דעותיהם ואף את התנהגותם והעדפותיהם הפוליטיות. ראו את סרטון הטבע שאנו מציגים למטה ובו בעלי חיים בדויים וכמה שהוא נראה אמיתי.


#סיכום
הכלים ליצירת סרטוני ה"דיפ פייקס" הם כלים טכנולוגיים, מתוחכמים מכל טכנולוגיה שעמדה בעבר לטובת השקרנים ומקדמי מה שזכה לכינויים כמו "אמת אלטרנטיבית", תיאוריות קונספירציה וכדומה.

מעולם לא עמדו טכנולוגיות כה חזקות לרשות השקרים הקטנים, להם מתאפשר עתה להמציא ולהפיק את הבדיות שלהם באופן מוחשי וריאליסטי מאי-פעם.

מצד שני, מעולם הדיפ פייק נולד עם הזמן גם יישום ה"דיפ נוסטלגיה". עד שימצאו גם לו שימושים מזיקים ואף מחרידים, זהו עולם חיובי, סנטימנטלי ומעורר התרגשות אמיתי, בהנחה שנוסטלגיה אינה מזיקה לאיש. ניתן לקרוא עליו בתגית "דיפ נוסטלגיה".


הסבר לטכנולוגיה (עברית):

https://youtu.be/lk-1hBpAyiU


אובמה מדבר פייק:

https://youtu.be/gLoI9hAX9dw


סרט טבע פיקטיבי שיצרו בעזרת Sora ומציג פייק חיות:

https://youtu.be/ObUBUKOn-bo


ההשלכות של זה מטורפות (עברית):

https://youtu.be/4BsiYnt51ok


כך יוצרים פנים ממאפיינים או שילובי פנים אמיתיים:

https://youtu.be/kSLJriaOumA


ושעשוע עם טראמפ ומיסטר בין:

https://youtu.be/HN-qlGf2mZw
מהי טכנולוגיית הדיפ נוסטלגיה?



בשנים האחרונות הולכת ותופסת את מקומה טכנולוגיה מבוססת בינה מלאכותית (AI) שנקראת דיפ פייק (Deepfake). טכנולוגיה זו משמשת לייצור או שינוי תוכן וידאו כך שהיא מציגה מציאות שלמעשה לא התרחשה מעולם. מנאומים שלא ננאמו מעבירים מסרים בדויים מפיהם לכאורה, של אנשים מפורסמים ועד סרטונים "פסאודו-תיעודיים", שמציגים מראות וטקסטים מדוברים, שנראים אמיתיים אך מעולם לא צולמו והוקלטו.

ענף חדש בעולם הדיפ פייק הוא יישום שזכה לשם "דיפ נוסטלגיה" (™Deep Nostalgia), המנפיש את פניהם של אנשים שצולמו בתמונות ישנות או היסטוריות, ומזיז את פניהם, כאילו צולמו בווידאו.

הטכנולוגיה הזו פועלת על כל תמונת סטילס (תמונות קפואות), כולל תמונות בשחור-לבן ותמונות שצולמו בצבע.

השם ניתן ליישום פורץ דרך זה על ידי חברת MyHeritage, שעוסקת בפיתוח טכנולוגיה ליצירת עצי משפחה מקוונים.

סרטוני הדיפ נוסטלגיה התפרסמו כשאנשים שיתפו עם בני משפחתם וחבריהם סרטונים קצרים ומונפשים שנוצרו כך, ובהם קרוביהם ואבותיהם מזיזים את ראשיהם, מצמצים, מחייכים ונעים בצורה ריאליסטית כמעט לחלוטין.


#איך פועלת הדיפ נוסטלגיה?
דיפ נוסטלגיה מחזירה, אם כן, לחיים אנשים שצולמו בצילומי סטילס. זה מתחיל באיתור פני המצולמים בתמונות ואז הפקה של מחוות ותנועות מציאותיות, ממש כאילו צולמו בווידאו. ההנפשה של הפנים בתמונות הסטילס מראה אותם מחייכים, זזים וממצמצים, כאילו צולמו כך במקור.

בבסיס הטכנולוגי של יישום ה"דיפ נוסטלגיה" פועל אלגוריתם למידה עמוקה (Deep Learning), המחבר בין תווי הפנים של המצולמים לבין אוסף מחוות שצולמו בווידאו ושמורים במאגר החברה.

פיתוח וצילום אותן מחוות נעשה כשצילמו אנשי מיי הריטג' מראש שלל מקטעי וידאו של שחקנים ועובדי החברה, המזיזים את ראשיהם ופניהם באורח טבעי, ממצמצים, מחייכים ומפנים את ראשם לכיוונים שונים.

למעשה שכרה חברת MyHeritage רישיון מחברת D-ID, לטכנולוגיה שפותחה בה ומאפשרת שחזור, באמצעות טכנולוגיית למידה עמוקה, של סרטוני וידאו.

על מנת שאפקט ההנפשה יופעל על התמונות, ברזולוציה הכי גבוהה האפשרית, עוברות תמונות מטושטשות חידוד אוטומטי, שמבצעת הטכנולוגיה החדשנית, מה שמעלה באופן דרמטי את איכות הסרטונים המופקים בה.

ההברקה האמיתית של הטכנולוגיה הזו נעוצה בזיהוי והבחירה האוטומטית שמבצע יישום הדיפ נוסטלגיה, מבין מקטעי המחוות בווידאו. ניתוח מהיר של מנח הראש וכיוון העיניים של המצולמים בתמונה מאפשרים ליישום להתאים להם באופן חכם את מחוללי ההנפשה המיטביים ולייצר את הסרטונים המונפשים באופן אופטימלי.


#ממה נמנעו מפתחי הדיפ נוסטלגי?
אנשי חברת MyHeritage ומפתחי היישום המלהיב נמנעו מהוספת דיבור לסרטונים.

לאור העובדה שטכנולוגיית הדיפ פייק ידועה ביכולות המטורפות שלה, גם בתחום הדיבור, נשאלת השאלה מדוע. הרי ניתן היה לשתול בפי המצולמים טקסטים מדוברים, שהיו נשמעים אמיתיים, על אף שמעולם לא צולמו והוקלטו.

ראשית, חשוב לומר שזיהוי קולי של המצולמים, ככל שמדובר באנשים שקרוביהם זוכרים עדיין את קולם האמיתי, היה מפחית את אפקט המציאות שיוצרים הסרטונים הללו.

אבל יש עוד סיבה לכך.

ב-MyHeritage מציינת שההימנעות מאפקטים קוליים של דיבור היא מכוונת. מטרתה, הם מטעימים, היא "למנוע שימושים זדוניים בכלי", דוגמת אלה שנעשים בסרטוני "דיפ פייק" של פוליטיקאים וידוענים שעודם בחיים.

לכן הם גם מבקשים מהמשתמשים לעשות בכלי שימוש רק על תמונות היסטוריות השייכות להם ולהימנע משימוש בתמונות של אנשים חיים, שלא אישרו את השימוש הזה.


הסבר לטכנולוגיה (עברית):

https://youtu.be/O4VPN_YjgIM?t=21s


הנה הדיפ נוסטלגיה:

https://youtu.be/tjBYSnoAWqg


ציורים מפורסמים שקמים לתחייה:

https://youtu.be/TWY1uBK4Zxc


ואפילו דיקטטורים קמים לתחיה עם הדיפ נוסטלגיה של מיי הריטג':

https://youtu.be/a-HR03bToew


אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

העולם הוא צבעוני ומופלא, אאוריקה כאן בשביל שתגלו אותו...

אלפי נושאים, תמונות וסרטונים, מפתיעים, מסקרנים וממוקדים.

ניתן לנווט בין הפריטים במגע, בעכבר, בגלגלת, או במקשי המקלדת

בואו לגלות, לחקור, ולקבל השראה!

אֵאוּרִיקַה - האנציקלופדיה של הסקרנות!

שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.