שלום,
נראה שכבר הכרתם את אאוריקה. בטח כבר גיליתם כאן דברים מדהימים, אולי כבר שאלתם שאלות וקיבלתם תשובות טובות.
נשמח לראות משהו מכם בספר האורחים שלנו: איזו מילה טובה, חוות דעת, עצה חכמה לשיפור או כל מה שיש לכם לספר לנו על אאוריקה, כפי שאתם חווים אותה.
»
«
מהי למידת מכונה או למידה חישובית? ומהם מדעני הדאטה?
למידת מכונה (Machine Learning), או למידה חישובית, היא היכולת של מערכת מחשב ללמוד ולהשתפר על ידי התבוננות ופעילות עצמאית שלה עם מידע.
זוהי לא בדיוק טכנולוגיה או כלי ספציפי, אלא תחום מחקרי מדעי, המשלב מרכיבים מעולמות הסטטיסטיקה ומדעי המחשב. באמצעותם מאפשרת למידת המכונה זיהוי אוטומטי של דפוסים מרתקים בכמויות נתונים גדולות.
#אבל איך מכונה לומדת?
ובכן, בואו נדמיין לרגע מצב דמיוני. דמיינו מיליוני תלמידים מטומטמים, שלומדים אצל מורה לא מוכשר במיוחד. כל פעם המורה הזה מראה להם משהו שהוא רוצה שיידעו (מראה להם למשל שתי תמונות ואומר מה מופיע בכל אחת) ואז בוחן אותם. חוץ מלתת ציון לתשובות שלהם, הוא תמיד מעיף מהכיתה שלו את אלו שלא זיהו ומשכפל את אלה שכן. אז מראה המורה עוד משהו ובוחן ושוב מעיף... הוא עושה את זה מיליוני פעמים... כן, דמיינו שהוא חוזר על התהליך הזה עם מיליוני תלמידים, שוב ושוב... קוראים לזה, אגב, "אִיטֵרַצְיות", פעולות שחוזרות על עצמן שוב ושוב במהלך פתרון של בעיה.
כך, בהדרגה ובאופן שלא תמיד מובן לנו, המכונות, סליחה - התלמידים המטומטמים, הולכים ומשתפרים. הם לומדים!
אז לאור הסיפור הזה, איך עושה זאת המחשב?
בצורה דומה אבל טכנולוגית, ככל שמחשב לומד מצויד ביותר נתונים והתנסויות, הוא נעשה חכם יותר. המידע שהוא מעבד מסייע לו לשפר כל הזמן ולגמרי בעצמו, את המודל החישובי שלו.
אנשי הלמידה החישובית מפתחים אלגוריתמים ודרכים שמאפשרים למחשב ללמוד בעצמו ולשפר את יכולותיו.
אם נסכם לרגע, אנשי למידת המכונה יוצרים מכונה המלמדת את עצמה התנהגויות ותובנות, על סמך מפגשים עם מצבים שונים וסיטואציות שמהם ניתן ללמוד ולהסיק מסקנות. המכונה הזו מתנהגת כמו בן-אנוש, שלומד ללא הפסקה, מהתנסויות וטעויות, אבל בהיקפים מטורפים ועם המון דאטה.
על ביג דאטה שמעתם? התחום הזה של מכונה לומדת הוא בדיוק הסיבה שענקי האינטרנט אוספים עלינו מידע בכמויות ענק. בעזרתן הם משפרים את האלגוריתמים והמכונות הלומדות שלהם ויוצרים להן ידע המשתבח והולך.
בלמידת מכונה מצויד המחשב באינטליגנציה מלאכותית ולומד מתוך דוגמאות והתנסויות קודמות שלו ולא בזכות מתכנת אנושי שמזין את הידע למחשב. כלומר, בלמידה כזו מתרחשת הלמידה על ידי המחשב מתוך דוגמאות ומקרים שקרו לו.
האלגוריתם של המחשב ממש מחקה את הדרך שבה פועלת הרשת העצבית שבמוח האנושי. באופן מסוים, מחשבים חכמים כבר הגיעו מזמן לביצועים שמזכירים את הלמידה של תינוקות על ידי חיקוי הוריהם. באופן אחר, הם כל כך משתפרים שיש כבר רבים שמתחילים לחשוש מזה...
המדענים מזהים למידת מכונה, כאשר הביצועים של משימה במחשב הולכים ומשתפרים עם הניסיון. כלומר, בכל פעם שתוכנת המחשב מבצעת משימה, באופן יעיל מאשר ביצעה אותה בעבר. ככל שתוכנה משיגה תוצאות טובות יותר, מבלי שמתכנת אנושי השפיע על הקוד שלה, אז התרחשה למידה חישובית, או למידת מכונה.
#מה עושים בלמידת מכונה?
לא חסרות מערכות שאנחנו פוגשים בהן ביום יום שלנו ומשתמשות בלמידת מכונה. למשל המלצות תוכן כמו שמקבלים מספוטיפיי שמציע לנו שירים שאנחנו עשויים לאהוב או סרטים מומלצים בנטפליקס. זיהוי דואר זבל ואזהרה, לעומת מיילים רגילים בג'ימייל. מערכת זיהוי פנים או טביעת אצבע בכניסה לטלפון, מערכות למניעת הונאה בכרטיסי אשראי ועוד.
מהי למידת מכונה (מתורגם):
https://youtu.be/f_uwKZIAeM0
איך מכונות לומדות? -הנה (מתורגם):
https://youtu.be/R9OHn5ZF4Uo
מאיפה מגיע המידע הנחוץ לאימון המכונה ומה חשוב באיסופו (מתורגם):
https://youtu.be/x2mRoFNm22g
המקור ההיסטורי של משין לרנינג ודרך פעולתה:
https://youtu.be/HBDp183HEic
עוד הסבר על למידת המכונה:
https://youtu.be/mJeNghZXtMo
אחד האתגרים בלמידת מכינה הוא ליצור למידה שאינה מוטית לכיוונים חברתיים ספציפיים:
https://youtu.be/59bMh59JQDo
הסבר קצר על הלמידה החישובית:
https://youtu.be/ty-kTUzMnjk
מחשב לומד שמתבונן בשחקנים המשחקים במשחקי מחשב ולומד לשחק ברמה מקצועית שיכולה להביס את הטובים שבהם:
https://youtu.be/EfGD2qveGdQ
תוכנה לומדת שמשחקת ומשתפרת כל הזמן במשחק מחשב:
https://youtu.be/qv6UVOQ0F44
רוצים לאמן מכונה ואפילו בלי תכנות? - הנה פעילות נחמדה וחכמה:
https://youtu.be/i9tjzr1KME0
למה טובה פרסונליזציה ברשת?
פרסונליזציה (Personalization) באתרי אינטרנט, באפליקציות ואפילו במערכות הפעלה, היא התאמה אישית של התוכן המוצג למשתמש, לתחומי העניין האישיים שלו ולמה שהוא מעדיף, מחפש ומתעניין.
כל אחד הוא מיוחד ואף אחד הוא לא כמו כולם.
החשיבות של הפרסונליזציה היא שלכל אדם יש תחומי עניין שונים במקצת, כך שאם יותאמו התכנים במיוחד לכל משתמש, קורא, או צרכן, הוא ייהנה מהם הרבה יותר ויבצע פעולות שישתלמו גם לשירות המקוון. זה יקרה משום שהתוכן שיותאם למשתמש יהיה יותר רלוונטי ובעל משמעות רבה יותר עבורו.
כך יוצא שפרסונליזציה היא טכנולוגיה משבשת, אחד הכלים הכי חזקים בדרך לשיבוש חיובי של שווקים שזקוקים לשיבוש, באנגלית "דיסראפשן" (Distruption), כלומר לחדשנות. על ההמלצות של ספוטיפיי שמעתם? - זו פרסונליזציה שנעשית מצוין.
באתרים רבים ניתן כיום למצוא רמות שונות של פרסונליזציה. דוגמאות לכך לא חסרות. הכי מוכרות הן תוצאות החיפוש של מנוע החיפוש של גוגל, שמותאמות לתחומי העניין של המחפש ולהיסטוריית החיפושים שלו. גוגל לומדת כל אחד מאיתנו ומתאימה לנו תוצאות חיפוש אישיות.
אגב, באותה שיטה היא גם מתאימה לנו פרסומות - היא גם יודעת מה חיפשנו או במה עוסק דף האינטרנט שבו אנו מתעניינים כרגע וגם מכירה אותנו, על תחביבינו, תחומי העניין שלנו ומה אנחנו חולמים לקנות או להכיר.
דוגמאות מוכרות נוספות הן למשל הצעות לחברים אפשריים שפייסבוק מציגה לנו, או הצגת פוסטים מומלצים בפיד של המשתמשים. השירות החברתי הזה לא מציג את אותם פוסטים ותכנים לכלל המשתמשים, כמו בבלוג רגיל, אלא בוחר פוסטים מתאימים ומותאמים לכל אחד ואחד. המטרה של פייסבוק היא להשאיר את המשתמשים כמה שיותר זמן ברשת החברתית שלה. הפרס שלה על השימוש המוגדל שלנו ברשת החברתית הוא הרבה לחיצות וצפיות בפרסומות, כמו גם מידע שהיא צוברת עלינו ושווה לה הון.
עוד דוגמאות הן המלצות על ספרים ומוצרים שיעניינו את המשתמש בחנות המקוונת של אמזון. אלה ניתנות על פי הלימוד של תחומי העניין שלו, כפי שבאו לידי ביטוי בקניות קודמות ובעיון באתר. כשהם מוצגים כך אנו מתפתים לקנות יותר מאשר תכננו. התוצאה היא שורת רווח מוגדלת ועשרות מיליארדי דולרים יותר.
פרסונליזציה עובדת טוב לשביעות הרצון שלנו משירותים נוספים. כך גם ממליצים על סרטים בשירות של נטפליקס, שירות שאגב יש לו המון לאיפה להשתפר. כך ממליצים באפליקציית ספוטיפיי על שירים או מוסיקה שתואמת לטעם המשתמש ובאתר YouTube, על סרטונים שהמשתמש עשוי לאהוב.
בשביל המשתמשים הפרסונליזציה עושה הרבה יותר מסתם המלצות טובות. אם נרצה להבין מדוע העיתונות המודפסת הולכת ונסגרת, כדאי להביט באפליקציה של גוגל ניוז. כשהיא מתאימה לנו הקוראים את החדשות המוגשות לנו מאתרי חדשות שונים, כך שנקבל את החדשות שבהם אנו מתעניינים, היא מבצעת פרסונליזציה.
בעולם המהיר שבו אנו חיים, עם אינספור הסחות דעת וכל כך מעט זמן פנוי, ההתאמה שעושים שירותים כאלה היא הצלה לאדם העסוק. כך ורק כך יקבל מי שחובב פוליטיקה הרבה חדשות מהתחום הפוליטי ופחות רכילות, שאותה יקבלו מי שממש אוהבים רכילות ושונאים חדשות פוליטיות או חדשות מעולם הפלילים, שלא פעם אגב מצטלבות דרכיהן באופן מוזר...
הנה פרסונליזציית התוכן:
https://youtu.be/iZko_YquwjU
איש שיווק מסביר איך פרסונליזציה משמשת להגדלת המכירות (עברית):
https://youtu.be/3wYkgclinDM
גם בחינוך מחפשים את הפיצוח הפרסונלי להוראה (עברית):
https://youtu.be/08zPDkfRnJw
ברור שפרסונליזציה של התוכן היא כלי שיווקי מעולה:
https://youtu.be/U39SZCB_i9w
יש לה המון יתרונות והיבטים:
https://youtu.be/iFgnQ0Uwl1M
אנשים בימינו התרגלו ומעדיפים טיפול אישי באתרים מסחריים, גם אם ברור להם שיש לו גם מטרות מסחריות:
https://youtu.be/fJT4xP1oZNE
והנה סרטון מקיף על הפרסונליזציה שב-2024 הופכת לעניין גדול עוד יותר:
https://youtu.be/6QFlakh8z2M?long=yes
מה זה NLP או עיבוד שפה טבעית ב-AI?
עיבוד שפה טבעית, או NLP, משתמש במחשבים ובטכנולוגיות של בינה מלאכותית, המתמקדות בפיתוח אלגוריתמים המאפשרים למחשבים לקרוא, להבין ולתקשר בשפה רגילה, כתובה או מדוברת אבל טבעית, שפה של בני אדם.
NLP הם ראשי תיבות של "Natural Language Processing" ובעברית "עיבוד שפה טבעית". זהו תת-תחום בבינה מלאכותית, הקשור בצד הבלשני שלה, צד השפה המדוברת.
ניתן לומר בפשטות שהמטרה של עיבוד שפה טבעית היא שמחשבים יוכלו לתקשר עם בני אדם באותו אופן בו אנו, בני האדם, מתקשרים בינינו.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית. התחום הזה במחשוב עוסק בבעיות הקשורות לעיבוד, טיפול ושינויים או מניפולציה של השפה הטבעית האנושית.
מטרת ה-NLP היא להבין שפות אנושיות, לנתח את התוכן והכוונה של המסרים שבהן ולהצליח לפרש את משמעותם הבסיסית, כך שניתן יהיה לגרום למחשבים "להבין" דברים שנכתבים או נאמרים בשפה הטבעית, כלומר בשפות של בני-אדם.
לשם כך, מודלים של NLP משתמשים בנוסחאות או בעצם אלגוריתמים של למידת מכונה, יחד עם שילוב כללים מוגדרים מראש.
בשנים האחרונות זוכה התחום לעניין רב, כחלק מהפיתוח של יישומי מחשב, רובם מבוססי בינה מלאכותית, יישומים שהתקשורת עימם היא בשפה אנושית.
רבים מהכלים הללו מחייבים תיאורים מילוליים של התוצר המצופה מהם, מנהלים שיחה עם המשתמש או מטפלים בטקסטים באופנים שונים. חלקם מייצרים ויוצרים יצירות באופן דומה ליצירה אנושית, מה שמחייב הנחיות, פרומפטים המהווים תיאור טקסטואלי של תוכן ואופי התוצרים המצופים, כמו תמונות, סרטים, מוסיקה, קוד ועוד.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית.
הנה הסבר פשוט של NLP במדעי המחשב:
https://youtu.be/pqgUfv7UP4A
היישומים המדהימים של עיבוד שפה טבעית לתקשורת בינינו ובין מערכות AI:
https://youtu.be/TZMZvULBVio
זה עיבוד שפה טבעית בלמידת מכונה:
https://youtu.be/CMrHM8a3hqw
מטרת ה-NLP בעולם של ימינו:
https://youtu.be/7NObIGHhQWA
עיבוד השפה הטבעית בטכנולוגיות AI יומיומיות:
https://youtu.be/43cXcuXGnXk
אי אפשר לדבר על NLP בלי לדבר על LLM (עברית):
https://youtu.be/ugxgxqRg2-I
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
מהו זיהוי פנים?
ממצלמות אבטחה במרחב הציבורי, דרך מצלמות מעקב המתעדות מיליוני אנשים בערים ובדרכים ועד לסוכנויות המעקב הממשלתיות, לאחרונה נראה שהיא בכל מקום. היכולת לזהות פנים באופן דיגיטלי מתבססת על המרה של תווי הפנים של אדם למפת נתונים, שניתן להשוות למיליוני מפות נתונים אחרות ולמצוא במי מדובר.
מדובר בטכנולוגיית זיהוי פנים (Facial recognition), המבוססת על יכולת טכנולוגית מבוססת אלגוריתם, או תוכנה, שמסוגלת לזהות אדם על פי צילום דיגיטלי שלו, אם בתצלום ואם בסרט וידאו. מערכות זיהוי פנים רבות מתיימרות כיום לעשות זאת באופן אוטומטי.
אחת השיטות לזיהוי פנים היא על ידי השוואת תכונות תווי הפנים שבתמונה לתמונות שמאוחסנות במאגר נתונים. אלגוריתם פשוט למד כבר מזמן לזהות בזמן צילום דיגיטלי, פנים אנושיות וכך עשה פוקוס עליהם, כדי שהפנים לא יצאו מטושטשים.
בשנים האחרונות הפכו האלגוריתמים של זיהוי פנים מדויקים מבעבר. הם מאפשרים לעבד כמויות אדירות של מידע, במהירות וביעילות, כשהם נעזרים במאגרי נתונים ענקיים המכילים את פניהם של אזרחים רבים.
המדהים הוא שהרשתות החברתיות מהוות כיום את מאגר הנתונים הגדול מאי-פעם, כשלכל צילום מתווספים מיידית שמות המצולם ופרטים מזהים רבים. המרכזיות של המדיה החברתית בחיינו מהווה סיכון לא קטן לפרטיות שלנו וזה יילך ויתחדד, ככל שיימצאו שימושים חדשים לטכנולוגיות הללו.
כל השחקנים הטכנולוגיים הגדולים כבר שם. אם זו פייסבוק, שמזהה את חבריך בתמונות שהעלית לקיר שלך, או גוגל שמזהה לבעלי סמארטפונים את פניהם של המצולמים בתמונות שבנייד האנדרואיד שלהם. מיקרוסופט, שהצליחה לפתח אלגוריתמים לשלטים שמזהים את המתבונן ומציעים לו פרסומות מטורגטות, כלומר פרסומות שונות לכל אדם ומותאמות לנושאים שבהם הוא מתעניין, בצורה די דומה לפרסומות בדפדפן, שמתאימות את עצמן לחיפושים שלך במנוע החיפוש. מוצר אחר של מיקרוסופט המשתמש בזיהוי פנים, הוא מצלמה שמסוגלת להבחין בין תאומים זהים ולזהותם על אף הדימיון הרב ביניהם.
מערכות זיהוי פנים משמשות כיום לאבטחה, לזיהוי החברים המצולמים ברשתות חברתיות ולמעקב אחרי פושעים וטרוריסטים במקומות ציבוריים. לעתים קרובות הן מופעלות ביחד עם טכנולוגיות משלימות, שכן זיהוי פנים היא חלק מתחום הזיהוי הביומטרי. טכנולוגיות נוספות שמשמשות בזיהוי ביומטרי הן זיהוי טביעות אצבע, זיהוי דנ"א וזיהוי קשתית העין.
כך אנו מזהים פנים (עברית):
https://youtu.be/mTSsCYob9mo
זיהוי פנים טכנולוגי:
https://youtu.be/wve5JWX7yoc
זיהוי פנים כאמצעי תשלום (עברית):
https://youtu.be/9yyeH6CK5xk
על זיהוי פנים ופרטיות (עברית):
https://youtu.be/fU3OMXLAKNk
טכנולוגיית האבטחה שמתבססת על זיהוי פנים:
https://youtu.be/9k-rTVfLesQ
מראת הפלא שמזהה בין השאר רגשות של המתבונן בה:
https://youtu.be/uN1yB17S2bk
נראה שזיהוי הפנים של חלונות 10 לא מתבלבל בין תאומים זהים:
https://youtu.be/J1NL246P9Vg
ויש גם זיהוי פנים מעט מביך כמו אלגוריתם שמבטיח לזהות את הגיל של המצולם:
https://youtu.be/Wi8DLKPQqJ0
איך מאמנים מכונות ובאילו שיטות הן לומדות?
למידת מכונה מתבססת על יצירה של מודל גדול. המודל עצמו הוא אכן אוסף גדול ומורכב של מספרים, שמייצגים מידע, כלומר דאטה שהוזן למודל מהעולם האמיתי כקלט (Input).
המספרים הללו מייצגים את פריטי הקלט המסוים ומגדירים קשרים מתמטיים ביניהם. על ידי אימון מתמיד של המודל, הוא הולך ומזהה את הקשרים הללו כדפוסים, שיהיו מוכנים כמעין ידע שהוא למד, לקראת שימוש בו, להצגת תחזיות, מענה לשאלות, חישובים של בעיות שנפנה אליו וכדומה.
#תהליך האימון
לפני וכדי שמודל יוכל לענות על שאלות או להציע תחזיות יש לאמן אותו. ממש כמו מאמן כושר או מפקד טירונים בצבא, שמקבלים אימון, הוא יקבל אוסף של נתונים, דאטה שיעמוד לרשותו, כדי שיוכל לזהות את אותם דפוסים. זה חייב להיות קלט (Input) עצום וגדול, כלומר המון נתונים, Big Data.
כדי לאמן מודל אנחנו נותנים לו אוסף של קלטים. הקלטים הללו ישתנו לפי סוג ומטרת המודל, אך המטרה הבסיסית, העליונה והתמידית שלו תהיה למצוא את הדפוסים בדאטה, כך שהוא יוכל ליצור תחזיות טובות ולתת תשובות טובות וללא הֲזָיוֹת (Hallucinations).
#שיטות אימון
למידת מכונה מתבצעת בכמה שיטות שונות, שכל אחת מחייבת "שיטת הוראה" שונה. ישנם 3 סוגים של למידת מכונה: למידה ללא פיקוח, למידה מפוקחת ולמידת חיזוק.
- למידה לא מפוקחת - היא למידת מכונה הלומדת באמצעות זיהוי עצמי של קווי דמיון ודפוסים וללא הנחיה אנושית.
- למידה מפוקחת - מתבססת על אימון בינה מלאכותית באמצעות דוגמאות מסומנות. כלומר, למידה שמסתמכת על קלט מבני אדם כדי לבדוק את דיוק התחזיות.
- למידת חיזוק - מתבססת על אימון בינה מלאכותית באמצעות ניסוי וטעייה. כלומר, מדובר בלמידה מחוזקת משמשת לתוכניות טיפול, תוך איסוף משוב באופן חוזר ונשנה (איטרטיבי) והשוואה מול הדאטה המקורית של כל פרופיל, כדי לקבוע את הטיפול היעיל ביותר לו.
כאשר מודלים אלה הופכים לעצמם, קשה יותר לקבוע את תהליך קבלת ההחלטות שלהם, מה שיכול להשפיע על העבודה, הבריאות והבטיחות שלנו.
#דוגמה
הנה דוגמה מהעולם הרפואי של רופאים והמטופלים שלהם:
בלמידה ללא פיקוח נוכל להשתמש כדי שהמודל יזהה קווי דמיון בין פרופילי מטופלים שונים ויאתר דפוסים שמתעוררים אצלם, כשהוא עושה זאת ללא הדרכה אנושית וללא פיקוח של רופאים ומומחים.
למידה מפוקחת, לעומת זאת, תסתמך על הקלט של הרופאים שיבצעו את האבחנה הסופית ויבדקו את הדיוק של חיזוי האלגוריתם. כלומר כאן המכונה תלמד מהמומחה, גם מהאבחנות המוצלחות שלו אך גם משגיאותיו. אם יוזנו למכונה נתונים של 2 קבוצות, חולים ובריאים, היא תזהה בעצמה מאפיינים שמשותפים לחולים במחלה מסוימת ושאינם נמצאים אצל אנשים בריאים. לאחר השוואה בין תחזיות המכונה לאבחון הסופי של המומחים, המכונה תלמד לזהות את התסמינים של המחלה ולסייע לרופאים לאבחן אותה נכון בעתיד.
למידת חיזוק תשמש לתכניות טיפול, בגישה איטרטיבית, תהליך חוזר ונשנה בו יוזן למכונה, שוב ושוב, המשוב החוזר על ידי הרופאים. המשוב יהיה לגבי יעילות התרופות, המינונים השונים ולגבי הטיפולים היעילים יותר ופחות, כך שהמודל ישווה יעילות של התרופות, המינונים והטיפולים לדאטה של החולה ויסיק מסקנות שיאפשרו לו לחזק בעתיד את הטיפולים המוצלחים והייחודיים יותר, אלו שיתאימו לפרופילי חולים, עם מאפיינים ומקרים שונים, לאור תגובות חולים משתנות, נסיבות שונות של המחלה ומצבי המחלה המגוונים לאורך הטיפול.
כלומר, החוקרים יכולים להשתמש במערכות למידת המכונה הללו ביחד, כדי לבנות מערכות בינה מלאכותית.
אבל - ויש כאן אבל משמעותי - יש לשים לב שככל שהמודלים הללו מכוונים באופן עצמאי, יהיה קשה יותר לקבוע כיצד האלגוריתמים השונים מגיעים לפתרונות שלהם, מה שיכול להיות בעל השפעה משמעותית על העבודה, הבריאות והבטיחות שלנו, בני האדם, כשאנו משתמשים בהם. לכן, באימון של מודלים גדולים (LLMs) משתמשים לרוב בכל השיטות הללו במקביל, כשלא פעם הן מאמנות אחת את השנייה.
הנה אימון מכונה פשוט (עברית):
https://youtu.be/CC-TGXxc-Go
כך המכונה לומדת ומדוע כדאי לשלב שיטות אימון שונות (מתורגם):
https://youtu.be/0yCJMt9Mx9c
וכך האלגוריתמים לומדים (מתורגם):
https://youtu.be/R9OHn5ZF4Uo?long=yes
מה ההבדל בין למידת מכונה ללמידה עמוקה?
הלמידה העמוקה (Deep Learning) היא טכנולוגיה שמאפשרת למערכות מחשב לחקות את פעולת המוח האנושי ולבצע למידה עצמית, תוך שיפור מתמיד המאפשר למערכת להיות חכמה יותר ויותר כל הזמן.
אבל מה ההבדל בין למידה עמוקה ללמידת מכונה?
אז ראשית, מבחינת מיון - דיפ לרנינג, בעברית למידה עמוקה, הוא תת-תחום של למידת מכונה.
אבל בעוד שב"למידת מכונה" (Machine Learning) קלאסית הלימוד הוא מתוך דאטה שתויג ואורגן מראש לשם כך, על ידי מי שמאמן את המכונה, בעזרת מה שנקרא "דאטה מתויג" (Labeled data), "למידה עמוקה" (Deep Learning) לומדת בעצמה - עם דאטה כמותי, כלומר מידע רב ולא מאורגן. למשל המוני דוגמאות לא מזוהות או מסודרות דווקא הניתנות לתוכנת הלמידה העמוקה והיא מייצרת את הסיווג וה"הבנה" של הדפוסים והסדר, שמאפשרים לה בהדרגה "להבין" את הדאטה הזה ולהפוך אותו לתובנות וידע, שגם הולך ומשתפר כל הזמן, כמו ילד שכל הזמן לומד דברים חדשים ורוכש תובנות טובות יותר על המציאות והחוקים ששוררים בה.
אם למידת מכונה זו למידת בית ספר, ממישהו שמלמד אותך ומתרגל אותך בלמידה, למידה עמוקה היא הלימוד אחרי שעת הלימודים - בשכונה, מתוך התבוננות, סקרנות ועיבוד נתונים עצמי.
משום כך, ככל שמערכת למידה עמוקה פועלת וככל שהיא בשימוש - היא משתפרת, יודעת יותר ויכולה לבצע משימות מורכבות יותר ובהצלחה הולכת וגדלה.
אז ההבדל בין למידה עמוקה ללמידת מכונה הוא בסיסי. בלמידת מכונה, כדי ללמוד ולהשתפר המערכת הממוחשבת צריכה מומחה אנושי, שיאתר תכונות מסוימות שעל פיהן הוא מאמן את המכונה או התוכנה.
בלמידה עמוקה, לעומת זאת, לא נדרשים בהכרח מי שיבצעו את האימון והארגון, התיוג והסידור של המידע בכדי שהמכונה תלמד. פשוט מזינים אליה המוני מקרים, למשל תמונות לזיהוי או מידע לניתוח, ונותנים לתוכנה לאתר בהם מאפיינים, הבדלים, דפוסים וכדומה. כך היא תזהה בעתיד דברים בתמונות או המלצות לשימוש במידע וכדומה. כך היא תלמד את עצמה כל הזמן ותהפוך יותר ויותר חכמה.
זה אולי גם קצת דומה לשני טיפוסי מורים. יש את המורים שמתעקשים להגיש לתלמידים את הידע "בכפית" ולהראות להם על מה להביט בלמידה, בעוד אחרים, נקרא להם "המלמדים העמוקים", נותנים לתלמידים לאתר את ההבדלים, להעלות השערות לגבי דפוסי מידע וחלוקה, להסיק מסקנות וכדומה.
אז כך, ממש כמו התלמידים אצל "המורה העמוק", תוכנת הלמידה העמוקה מקבלת בלמידה כזו המון "הזדמנויות" ללמוד בעצמה ולהתבגר. זאת במקום האימון על ידי אדם, שמתבטא בהוראות ואימון הממחישים לתוכנה מה לחפש בדאטה, כדי להבחין בין המקרים.
זו, אגב, גם הביקורת של המדענים על השיטה הזו. הם גורסים שלא נדרש עוד ממדענים להבין בעיה כדי לפתור אותה, מה שמביא לרדידות ולפתרון בעיות בניסוי וטעייה טכנולוגיים, במקום באמצעות תיאוריות מעמיקות ובחינתן באופן מדעי.
הנה הסבר פשוט של הלמידה העמוקה:
https://youtu.be/6M5VXKLf4D4
למידה עמוקה מחייבת יותר זמן, יותר דאטה ויותר כוח מחשוב מלמידת מכונה:
https://youtu.be/-SgkLEuhfbg
כך הולך ומתפתח עץ ההחלטות המשתפר של מערכת הלמידה העמוקה:
http://youtu.be/nSg4HKHdDs4
שיעור וידאו קצר על שיטות הלמידה השונות (עברית):
https://youtu.be/Bqdn6e-nH18?long=yes
והרצאה אקדמית על למידה עמוקה (עברית):
https://youtu.be/z-aezi4W90o?long=yes
איך מלמדים מחשבים לזהות פנים?
מהי שרשרת מחשבה בלמידת מכונה?
דמיינו מודל AI שלא רק עונה לכם על השאלה ששאלתם אלא משתף אתכם בהסבר מפורט על סדר הפעולות שעשה בדרך לתשובה ובמהלך המחשבה שלו. נכון שזה מעולה? - זה מצוין כדי להבין, ללמוד, להשתפר וכמובן לאמת שהתשובה היא לא עוד הזיית AI, כמו שאנו מקבלים לעתים מהמודלים שלנו.
שרשרת מחשבה (Chain of thought ובקיצור COT) היא בדיוק שיטה כזו. טכניקה חדישה יחסית, שפותחה בתחום הבינה המלאכותית, לפיה הבינה מתבקשת לא רק לענות על שאלה, אלא להסביר ולשתף בכל שלב, בצעדים או בשלבים לקראת ועד הפיתרון. מכאן בא גם תרגום נוסף ואולי אף מדויק יותר בעברית של התהליך: "חשיבה מדורגת".
אם נדמיין לרגע שאנחנו מלמדים ילד לפתור בעיה מורכבת, סביר שלא נגיד לו את התשובה הסופית מיד. במקום זאת, נעדיף להוביל אותו אל הפתרון, בצעדים קטנים, צעד אחרי צעד. וזה בדיוק מה שקורה כשמתקשרים עם מודלים של בינה מלאכותית בדרך של שרשרת החשיבה, או החשיבה המדורגת.
באופן דומה, אפשר להנחות את הצ'טבוט כבר בפרומפט, לתת הסבר בשלבים של דרך הפתרון או ההגעה לתשובה ולא רק את התשובה עצמה.
#איך זה עובד בפועל?
זה לא מסובך. במקום לשאול "מה התשובה?", אפשר לכתוב למודל "בוא נחשוב על זה צעד אחרי צעד" או "הסבר לי את תהליך החשיבה שלך". התוצאה די מפתיעה: המודל הממושמע מתחיל לפרק את הבעיה לחלקים קטנים יותר, מסביר כל שלב בדרך ומוביל בהדרגה אל הפתרון המלא.
לטכניקה הזו יש משמעות מיוחדת בעולם הפרומפטים. כשאנחנו כותבים פרומפט חכם, אנחנו למעשה מזמינים את המודל לשתף אותנו בתהליך החשיבה שלו, בדיוק כמו תלמיד שמראה את כל שלבי הפתרון במחברת המתמטיקה. במקום לקבל תשובה יבשה וסופית, אנחנו מקבלים הצצה מרתקת אל תוך "המוח" של הבינה המלאכותית.
ושוב - לא מדובר רק על חקירת מידע, אלא על חקר הבינה האנושית עצמה. בדרך הזו אנו יכולים לחייב את הבינה להיות מאורגנת יותר ואולי אף ליפול פחות לאותן הזיות (Hallucinations), פריטי מידע שקריים או מטעים שלרוב מוצגים כעובדה.
#מה היתרון בשיטה הזו?
היתרון הגדול של שיטת "שרשרת המחשבה" הוא כפול: לא זו בלבד שהיא משפרת משמעותית את הדיוק של התשובות, אלא שהיא גם הופכת את כל התהליך לשקוף יותר. כשאנו, בני האדם, שותפים לתהליך המחשבה המודרגת הזו, ההרגשה היא כמו להציץ מעבר לכתפו של מומחה בזמן שהוא עובד - אנו לא רק רואים את התוצאה הסופית, אלא יכולים להבין בדיוק איך הגיעו אליה.
ובעידן שבו בינה מלאכותית הופכת לחלק בלתי נפרד מחיינו, היכולת להבין את תהליך החשיבה של מודל שפה או כל מכונה בינתית שהיא, היא לא רק יתרון, כי אחרי שמתנסים בה, מבינים כמה היא לעתים הכרחית.
הנה שרשרת מחשבה:
https://youtu.be/Fp-ue4UCE3s
הסבר יפה של ה-Chain of Thought:
https://youtu.be/4Iwnx2cVqtE
כך תשלטו בהנחיות שרשרת, באנגלית Chain prompting:
https://youtu.be/B4MR8m7V17A?long=yes
פודקסט AI על הסבר מפורט יותר על החשיבה המדורגת:
https://youtu.be/uo6y8oDrW3U?long=yes
והסבר מפורט יותר על זה:
https://youtu.be/C_gf9KNScIo?long=yes
מהי הבינה המלאכותית גנרטיבית שיודעת לייצר תוכן?
בינה מלאכותית גנרטיבית (Generative AI), בעברית "בינה מלאכותית יוצרת", היא בינה מלאכותית שיכולה לייצר עבור המשתמש מגוון עצום של תוכן חדש. התוכן הזה משתרע על מגוון תחומים גדול, שהולך ומתפתח מיום ליום ובשימוש בצורת כלי איי, כלים שמאפשרים לייצר תכנים ותוצרים באופן מקוון, או בהתקנה על המחשב.
התוכן שבינה גנרטיבית יודעת לייצר כולל החל מטקסטים, דרך תמונות, סרטונים, מוסיקה, אנימציה ומגוון אדיר של סוגי מדיה ויישומים נוספים. ביניהם נכללים כתיבת קוד, עיצוב גרפי, תכניות באינספור תחומים, ניסוחי מכתבים, מאמרים וספרים ועוד.
#הבינה היוצרת יודעת לעשות 3 דברים עיקריים:
1. לקבל דאטה, כלומר נתונים מסוג כלשהו.
2. ללמוד מהדאטה הזה על הסוג.
3. לייצר לבקשת המשתמש תוצרים חדשים מסוג זה.
התקשורת בין המשתמש למודל השפה של בינה הגנרטיבית (LLM) מתבצעת כיום באמצעות כתיבה של פרומפט (Prompt), שהיא הנחייה מילולית בשפה טבעית, השפה הרגילה שלנו, כולל אנגלית, עברית וכדומה (ראו בתגית "פרומפטים").
לפרומפטים הללו מתווספים לעתים ממשקי משתמש נוספים, נוחים, קלים ולרוב גם יעילים יותר למתחילים. ביניהם אנו מוצאים תפריטים, כפתורים על המסך, תגיות, בחירת אפשרויות בכפתורי רדיו, קופסאות סימון וכדומה. כיום נכנס גם הממשק הקולי בו המשתמש משוחח עם מודל השפה וההוראות מתורגמות מקול לטקסט, על ידי ה-AI ומבוצעות מיד.
ההתחלה, אגב, של פיתוח המודלים הללו הייתה צנועה למדי. היא התבטאה בהכנסת קובץ סאונד כמו MP3 למערכת הבינה וקבלת התמלול שלו כטקסט כתוב. בהמשך הפיתוח הלכו השימושים בהם וגדלו, נעשו מורכבים ומדהימים יותר ויותר וכיום הבינה הגנרטיבית היא מפותחת להפליא.
בעיני רבים הבינה הגנרטיבית מאיימת כיום להחליף אנשים בעבודות שהם עושים. מומחים טוענים שזה לא מדויק ושמה שיוחלף הם תהליכי העבודה (בצירוף עובדים שלא יתעדכנו לחידושי ה-AI). לטענתם, תמיד יידרש המרכיב האנושי שיוודא שהשימוש בבינה המלאכותית ובמיוחד היצירתית, יהיה מוצלח.
אז כדי שיוכלו להמשיך לעבוד, העובדים יצטרכו להתעדכן, ללמוד ולהצטייד ביכולות חדשות, שיותאמו לדרישות החדשות של המעסיקים. קראו על כך בתגית "בינה מלאכותית גנרטיבית, אבטלה".
הנה הסבר על הבינה הגנרטיבית:
https://youtu.be/rwF-X5STYks
הבינה היצירתית והתחומים שהיא עתידה לשבש:
https://youtu.be/vneJieU5qlg
היכולות המטורפות של הבינה המלאכותית הגנרטיבית (עברית):
https://youtu.be/05oOucZmO8Y
התפתחות התחום הגנרטיבי כפי שהוא מוצג באחת מאלפי חברות Generative AI (עברית):
https://youtu.be/joJVqKTPVsY
מהי בינה גנרטיבית?
https://youtu.be/pWNAtUwnBS8
משמעות ה-AI הגנרטיבי בעולם הכתיבה העיתונאית:
https://youtu.be/3Jopz-V-IRQ
הנה הסבר מעמיק על הבינה המלאכותית היוצרת:
https://youtu.be/2IK3DFHRFfw?long=yes
אוסף חידושי וחדשות AI וידאו מדצמבר 2024:
https://youtu.be/30ZoRlr-TrY?long=yes
וסקירה מקיפה על הבינה המלאכותית הג'נרטיבית:
https://youtu.be/2IK3DFHRFfw?long=yes

למידת מכונה (Machine Learning), או למידה חישובית, היא היכולת של מערכת מחשב ללמוד ולהשתפר על ידי התבוננות ופעילות עצמאית שלה עם מידע.
זוהי לא בדיוק טכנולוגיה או כלי ספציפי, אלא תחום מחקרי מדעי, המשלב מרכיבים מעולמות הסטטיסטיקה ומדעי המחשב. באמצעותם מאפשרת למידת המכונה זיהוי אוטומטי של דפוסים מרתקים בכמויות נתונים גדולות.
#אבל איך מכונה לומדת?
ובכן, בואו נדמיין לרגע מצב דמיוני. דמיינו מיליוני תלמידים מטומטמים, שלומדים אצל מורה לא מוכשר במיוחד. כל פעם המורה הזה מראה להם משהו שהוא רוצה שיידעו (מראה להם למשל שתי תמונות ואומר מה מופיע בכל אחת) ואז בוחן אותם. חוץ מלתת ציון לתשובות שלהם, הוא תמיד מעיף מהכיתה שלו את אלו שלא זיהו ומשכפל את אלה שכן. אז מראה המורה עוד משהו ובוחן ושוב מעיף... הוא עושה את זה מיליוני פעמים... כן, דמיינו שהוא חוזר על התהליך הזה עם מיליוני תלמידים, שוב ושוב... קוראים לזה, אגב, "אִיטֵרַצְיות", פעולות שחוזרות על עצמן שוב ושוב במהלך פתרון של בעיה.
כך, בהדרגה ובאופן שלא תמיד מובן לנו, המכונות, סליחה - התלמידים המטומטמים, הולכים ומשתפרים. הם לומדים!
אז לאור הסיפור הזה, איך עושה זאת המחשב?
בצורה דומה אבל טכנולוגית, ככל שמחשב לומד מצויד ביותר נתונים והתנסויות, הוא נעשה חכם יותר. המידע שהוא מעבד מסייע לו לשפר כל הזמן ולגמרי בעצמו, את המודל החישובי שלו.
אנשי הלמידה החישובית מפתחים אלגוריתמים ודרכים שמאפשרים למחשב ללמוד בעצמו ולשפר את יכולותיו.
אם נסכם לרגע, אנשי למידת המכונה יוצרים מכונה המלמדת את עצמה התנהגויות ותובנות, על סמך מפגשים עם מצבים שונים וסיטואציות שמהם ניתן ללמוד ולהסיק מסקנות. המכונה הזו מתנהגת כמו בן-אנוש, שלומד ללא הפסקה, מהתנסויות וטעויות, אבל בהיקפים מטורפים ועם המון דאטה.
על ביג דאטה שמעתם? התחום הזה של מכונה לומדת הוא בדיוק הסיבה שענקי האינטרנט אוספים עלינו מידע בכמויות ענק. בעזרתן הם משפרים את האלגוריתמים והמכונות הלומדות שלהם ויוצרים להן ידע המשתבח והולך.
בלמידת מכונה מצויד המחשב באינטליגנציה מלאכותית ולומד מתוך דוגמאות והתנסויות קודמות שלו ולא בזכות מתכנת אנושי שמזין את הידע למחשב. כלומר, בלמידה כזו מתרחשת הלמידה על ידי המחשב מתוך דוגמאות ומקרים שקרו לו.
האלגוריתם של המחשב ממש מחקה את הדרך שבה פועלת הרשת העצבית שבמוח האנושי. באופן מסוים, מחשבים חכמים כבר הגיעו מזמן לביצועים שמזכירים את הלמידה של תינוקות על ידי חיקוי הוריהם. באופן אחר, הם כל כך משתפרים שיש כבר רבים שמתחילים לחשוש מזה...
המדענים מזהים למידת מכונה, כאשר הביצועים של משימה במחשב הולכים ומשתפרים עם הניסיון. כלומר, בכל פעם שתוכנת המחשב מבצעת משימה, באופן יעיל מאשר ביצעה אותה בעבר. ככל שתוכנה משיגה תוצאות טובות יותר, מבלי שמתכנת אנושי השפיע על הקוד שלה, אז התרחשה למידה חישובית, או למידת מכונה.
#מה עושים בלמידת מכונה?
לא חסרות מערכות שאנחנו פוגשים בהן ביום יום שלנו ומשתמשות בלמידת מכונה. למשל המלצות תוכן כמו שמקבלים מספוטיפיי שמציע לנו שירים שאנחנו עשויים לאהוב או סרטים מומלצים בנטפליקס. זיהוי דואר זבל ואזהרה, לעומת מיילים רגילים בג'ימייל. מערכת זיהוי פנים או טביעת אצבע בכניסה לטלפון, מערכות למניעת הונאה בכרטיסי אשראי ועוד.
מהי למידת מכונה (מתורגם):
https://youtu.be/f_uwKZIAeM0
איך מכונות לומדות? -הנה (מתורגם):
https://youtu.be/R9OHn5ZF4Uo
מאיפה מגיע המידע הנחוץ לאימון המכונה ומה חשוב באיסופו (מתורגם):
https://youtu.be/x2mRoFNm22g
המקור ההיסטורי של משין לרנינג ודרך פעולתה:
https://youtu.be/HBDp183HEic
עוד הסבר על למידת המכונה:
https://youtu.be/mJeNghZXtMo
אחד האתגרים בלמידת מכינה הוא ליצור למידה שאינה מוטית לכיוונים חברתיים ספציפיים:
https://youtu.be/59bMh59JQDo
הסבר קצר על הלמידה החישובית:
https://youtu.be/ty-kTUzMnjk
מחשב לומד שמתבונן בשחקנים המשחקים במשחקי מחשב ולומד לשחק ברמה מקצועית שיכולה להביס את הטובים שבהם:
https://youtu.be/EfGD2qveGdQ
תוכנה לומדת שמשחקת ומשתפרת כל הזמן במשחק מחשב:
https://youtu.be/qv6UVOQ0F44
רוצים לאמן מכונה ואפילו בלי תכנות? - הנה פעילות נחמדה וחכמה:
https://youtu.be/i9tjzr1KME0

פרסונליזציה (Personalization) באתרי אינטרנט, באפליקציות ואפילו במערכות הפעלה, היא התאמה אישית של התוכן המוצג למשתמש, לתחומי העניין האישיים שלו ולמה שהוא מעדיף, מחפש ומתעניין.
כל אחד הוא מיוחד ואף אחד הוא לא כמו כולם.
החשיבות של הפרסונליזציה היא שלכל אדם יש תחומי עניין שונים במקצת, כך שאם יותאמו התכנים במיוחד לכל משתמש, קורא, או צרכן, הוא ייהנה מהם הרבה יותר ויבצע פעולות שישתלמו גם לשירות המקוון. זה יקרה משום שהתוכן שיותאם למשתמש יהיה יותר רלוונטי ובעל משמעות רבה יותר עבורו.
כך יוצא שפרסונליזציה היא טכנולוגיה משבשת, אחד הכלים הכי חזקים בדרך לשיבוש חיובי של שווקים שזקוקים לשיבוש, באנגלית "דיסראפשן" (Distruption), כלומר לחדשנות. על ההמלצות של ספוטיפיי שמעתם? - זו פרסונליזציה שנעשית מצוין.
באתרים רבים ניתן כיום למצוא רמות שונות של פרסונליזציה. דוגמאות לכך לא חסרות. הכי מוכרות הן תוצאות החיפוש של מנוע החיפוש של גוגל, שמותאמות לתחומי העניין של המחפש ולהיסטוריית החיפושים שלו. גוגל לומדת כל אחד מאיתנו ומתאימה לנו תוצאות חיפוש אישיות.
אגב, באותה שיטה היא גם מתאימה לנו פרסומות - היא גם יודעת מה חיפשנו או במה עוסק דף האינטרנט שבו אנו מתעניינים כרגע וגם מכירה אותנו, על תחביבינו, תחומי העניין שלנו ומה אנחנו חולמים לקנות או להכיר.
דוגמאות מוכרות נוספות הן למשל הצעות לחברים אפשריים שפייסבוק מציגה לנו, או הצגת פוסטים מומלצים בפיד של המשתמשים. השירות החברתי הזה לא מציג את אותם פוסטים ותכנים לכלל המשתמשים, כמו בבלוג רגיל, אלא בוחר פוסטים מתאימים ומותאמים לכל אחד ואחד. המטרה של פייסבוק היא להשאיר את המשתמשים כמה שיותר זמן ברשת החברתית שלה. הפרס שלה על השימוש המוגדל שלנו ברשת החברתית הוא הרבה לחיצות וצפיות בפרסומות, כמו גם מידע שהיא צוברת עלינו ושווה לה הון.
עוד דוגמאות הן המלצות על ספרים ומוצרים שיעניינו את המשתמש בחנות המקוונת של אמזון. אלה ניתנות על פי הלימוד של תחומי העניין שלו, כפי שבאו לידי ביטוי בקניות קודמות ובעיון באתר. כשהם מוצגים כך אנו מתפתים לקנות יותר מאשר תכננו. התוצאה היא שורת רווח מוגדלת ועשרות מיליארדי דולרים יותר.
פרסונליזציה עובדת טוב לשביעות הרצון שלנו משירותים נוספים. כך גם ממליצים על סרטים בשירות של נטפליקס, שירות שאגב יש לו המון לאיפה להשתפר. כך ממליצים באפליקציית ספוטיפיי על שירים או מוסיקה שתואמת לטעם המשתמש ובאתר YouTube, על סרטונים שהמשתמש עשוי לאהוב.
בשביל המשתמשים הפרסונליזציה עושה הרבה יותר מסתם המלצות טובות. אם נרצה להבין מדוע העיתונות המודפסת הולכת ונסגרת, כדאי להביט באפליקציה של גוגל ניוז. כשהיא מתאימה לנו הקוראים את החדשות המוגשות לנו מאתרי חדשות שונים, כך שנקבל את החדשות שבהם אנו מתעניינים, היא מבצעת פרסונליזציה.
בעולם המהיר שבו אנו חיים, עם אינספור הסחות דעת וכל כך מעט זמן פנוי, ההתאמה שעושים שירותים כאלה היא הצלה לאדם העסוק. כך ורק כך יקבל מי שחובב פוליטיקה הרבה חדשות מהתחום הפוליטי ופחות רכילות, שאותה יקבלו מי שממש אוהבים רכילות ושונאים חדשות פוליטיות או חדשות מעולם הפלילים, שלא פעם אגב מצטלבות דרכיהן באופן מוזר...
הנה פרסונליזציית התוכן:
https://youtu.be/iZko_YquwjU
איש שיווק מסביר איך פרסונליזציה משמשת להגדלת המכירות (עברית):
https://youtu.be/3wYkgclinDM
גם בחינוך מחפשים את הפיצוח הפרסונלי להוראה (עברית):
https://youtu.be/08zPDkfRnJw
ברור שפרסונליזציה של התוכן היא כלי שיווקי מעולה:
https://youtu.be/U39SZCB_i9w
יש לה המון יתרונות והיבטים:
https://youtu.be/iFgnQ0Uwl1M
אנשים בימינו התרגלו ומעדיפים טיפול אישי באתרים מסחריים, גם אם ברור להם שיש לו גם מטרות מסחריות:
https://youtu.be/fJT4xP1oZNE
והנה סרטון מקיף על הפרסונליזציה שב-2024 הופכת לעניין גדול עוד יותר:
https://youtu.be/6QFlakh8z2M?long=yes

עיבוד שפה טבעית, או NLP, משתמש במחשבים ובטכנולוגיות של בינה מלאכותית, המתמקדות בפיתוח אלגוריתמים המאפשרים למחשבים לקרוא, להבין ולתקשר בשפה רגילה, כתובה או מדוברת אבל טבעית, שפה של בני אדם.
NLP הם ראשי תיבות של "Natural Language Processing" ובעברית "עיבוד שפה טבעית". זהו תת-תחום בבינה מלאכותית, הקשור בצד הבלשני שלה, צד השפה המדוברת.
ניתן לומר בפשטות שהמטרה של עיבוד שפה טבעית היא שמחשבים יוכלו לתקשר עם בני אדם באותו אופן בו אנו, בני האדם, מתקשרים בינינו.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית. התחום הזה במחשוב עוסק בבעיות הקשורות לעיבוד, טיפול ושינויים או מניפולציה של השפה הטבעית האנושית.
מטרת ה-NLP היא להבין שפות אנושיות, לנתח את התוכן והכוונה של המסרים שבהן ולהצליח לפרש את משמעותם הבסיסית, כך שניתן יהיה לגרום למחשבים "להבין" דברים שנכתבים או נאמרים בשפה הטבעית, כלומר בשפות של בני-אדם.
לשם כך, מודלים של NLP משתמשים בנוסחאות או בעצם אלגוריתמים של למידת מכונה, יחד עם שילוב כללים מוגדרים מראש.
בשנים האחרונות זוכה התחום לעניין רב, כחלק מהפיתוח של יישומי מחשב, רובם מבוססי בינה מלאכותית, יישומים שהתקשורת עימם היא בשפה אנושית.
רבים מהכלים הללו מחייבים תיאורים מילוליים של התוצר המצופה מהם, מנהלים שיחה עם המשתמש או מטפלים בטקסטים באופנים שונים. חלקם מייצרים ויוצרים יצירות באופן דומה ליצירה אנושית, מה שמחייב הנחיות, פרומפטים המהווים תיאור טקסטואלי של תוכן ואופי התוצרים המצופים, כמו תמונות, סרטים, מוסיקה, קוד ועוד.
עיבוד השפה הטבעית קשור לתחום הבלשנות החישובית והוא משלב רעיונות מתחום מדעי המחשב בחקר השפה האנושית.
הנה הסבר פשוט של NLP במדעי המחשב:
https://youtu.be/pqgUfv7UP4A
היישומים המדהימים של עיבוד שפה טבעית לתקשורת בינינו ובין מערכות AI:
https://youtu.be/TZMZvULBVio
זה עיבוד שפה טבעית בלמידת מכונה:
https://youtu.be/CMrHM8a3hqw
מטרת ה-NLP בעולם של ימינו:
https://youtu.be/7NObIGHhQWA
עיבוד השפה הטבעית בטכנולוגיות AI יומיומיות:
https://youtu.be/43cXcuXGnXk
אי אפשר לדבר על NLP בלי לדבר על LLM (עברית):
https://youtu.be/ugxgxqRg2-I
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks

ממצלמות אבטחה במרחב הציבורי, דרך מצלמות מעקב המתעדות מיליוני אנשים בערים ובדרכים ועד לסוכנויות המעקב הממשלתיות, לאחרונה נראה שהיא בכל מקום. היכולת לזהות פנים באופן דיגיטלי מתבססת על המרה של תווי הפנים של אדם למפת נתונים, שניתן להשוות למיליוני מפות נתונים אחרות ולמצוא במי מדובר.
מדובר בטכנולוגיית זיהוי פנים (Facial recognition), המבוססת על יכולת טכנולוגית מבוססת אלגוריתם, או תוכנה, שמסוגלת לזהות אדם על פי צילום דיגיטלי שלו, אם בתצלום ואם בסרט וידאו. מערכות זיהוי פנים רבות מתיימרות כיום לעשות זאת באופן אוטומטי.
אחת השיטות לזיהוי פנים היא על ידי השוואת תכונות תווי הפנים שבתמונה לתמונות שמאוחסנות במאגר נתונים. אלגוריתם פשוט למד כבר מזמן לזהות בזמן צילום דיגיטלי, פנים אנושיות וכך עשה פוקוס עליהם, כדי שהפנים לא יצאו מטושטשים.
בשנים האחרונות הפכו האלגוריתמים של זיהוי פנים מדויקים מבעבר. הם מאפשרים לעבד כמויות אדירות של מידע, במהירות וביעילות, כשהם נעזרים במאגרי נתונים ענקיים המכילים את פניהם של אזרחים רבים.
המדהים הוא שהרשתות החברתיות מהוות כיום את מאגר הנתונים הגדול מאי-פעם, כשלכל צילום מתווספים מיידית שמות המצולם ופרטים מזהים רבים. המרכזיות של המדיה החברתית בחיינו מהווה סיכון לא קטן לפרטיות שלנו וזה יילך ויתחדד, ככל שיימצאו שימושים חדשים לטכנולוגיות הללו.
כל השחקנים הטכנולוגיים הגדולים כבר שם. אם זו פייסבוק, שמזהה את חבריך בתמונות שהעלית לקיר שלך, או גוגל שמזהה לבעלי סמארטפונים את פניהם של המצולמים בתמונות שבנייד האנדרואיד שלהם. מיקרוסופט, שהצליחה לפתח אלגוריתמים לשלטים שמזהים את המתבונן ומציעים לו פרסומות מטורגטות, כלומר פרסומות שונות לכל אדם ומותאמות לנושאים שבהם הוא מתעניין, בצורה די דומה לפרסומות בדפדפן, שמתאימות את עצמן לחיפושים שלך במנוע החיפוש. מוצר אחר של מיקרוסופט המשתמש בזיהוי פנים, הוא מצלמה שמסוגלת להבחין בין תאומים זהים ולזהותם על אף הדימיון הרב ביניהם.
מערכות זיהוי פנים משמשות כיום לאבטחה, לזיהוי החברים המצולמים ברשתות חברתיות ולמעקב אחרי פושעים וטרוריסטים במקומות ציבוריים. לעתים קרובות הן מופעלות ביחד עם טכנולוגיות משלימות, שכן זיהוי פנים היא חלק מתחום הזיהוי הביומטרי. טכנולוגיות נוספות שמשמשות בזיהוי ביומטרי הן זיהוי טביעות אצבע, זיהוי דנ"א וזיהוי קשתית העין.
כך אנו מזהים פנים (עברית):
https://youtu.be/mTSsCYob9mo
זיהוי פנים טכנולוגי:
https://youtu.be/wve5JWX7yoc
זיהוי פנים כאמצעי תשלום (עברית):
https://youtu.be/9yyeH6CK5xk
על זיהוי פנים ופרטיות (עברית):
https://youtu.be/fU3OMXLAKNk
טכנולוגיית האבטחה שמתבססת על זיהוי פנים:
https://youtu.be/9k-rTVfLesQ
מראת הפלא שמזהה בין השאר רגשות של המתבונן בה:
https://youtu.be/uN1yB17S2bk
נראה שזיהוי הפנים של חלונות 10 לא מתבלבל בין תאומים זהים:
https://youtu.be/J1NL246P9Vg
ויש גם זיהוי פנים מעט מביך כמו אלגוריתם שמבטיח לזהות את הגיל של המצולם:
https://youtu.be/Wi8DLKPQqJ0
למידת מכונה

למידת מכונה מתבססת על יצירה של מודל גדול. המודל עצמו הוא אכן אוסף גדול ומורכב של מספרים, שמייצגים מידע, כלומר דאטה שהוזן למודל מהעולם האמיתי כקלט (Input).
המספרים הללו מייצגים את פריטי הקלט המסוים ומגדירים קשרים מתמטיים ביניהם. על ידי אימון מתמיד של המודל, הוא הולך ומזהה את הקשרים הללו כדפוסים, שיהיו מוכנים כמעין ידע שהוא למד, לקראת שימוש בו, להצגת תחזיות, מענה לשאלות, חישובים של בעיות שנפנה אליו וכדומה.
#תהליך האימון
לפני וכדי שמודל יוכל לענות על שאלות או להציע תחזיות יש לאמן אותו. ממש כמו מאמן כושר או מפקד טירונים בצבא, שמקבלים אימון, הוא יקבל אוסף של נתונים, דאטה שיעמוד לרשותו, כדי שיוכל לזהות את אותם דפוסים. זה חייב להיות קלט (Input) עצום וגדול, כלומר המון נתונים, Big Data.
כדי לאמן מודל אנחנו נותנים לו אוסף של קלטים. הקלטים הללו ישתנו לפי סוג ומטרת המודל, אך המטרה הבסיסית, העליונה והתמידית שלו תהיה למצוא את הדפוסים בדאטה, כך שהוא יוכל ליצור תחזיות טובות ולתת תשובות טובות וללא הֲזָיוֹת (Hallucinations).
#שיטות אימון
למידת מכונה מתבצעת בכמה שיטות שונות, שכל אחת מחייבת "שיטת הוראה" שונה. ישנם 3 סוגים של למידת מכונה: למידה ללא פיקוח, למידה מפוקחת ולמידת חיזוק.
- למידה לא מפוקחת - היא למידת מכונה הלומדת באמצעות זיהוי עצמי של קווי דמיון ודפוסים וללא הנחיה אנושית.
- למידה מפוקחת - מתבססת על אימון בינה מלאכותית באמצעות דוגמאות מסומנות. כלומר, למידה שמסתמכת על קלט מבני אדם כדי לבדוק את דיוק התחזיות.
- למידת חיזוק - מתבססת על אימון בינה מלאכותית באמצעות ניסוי וטעייה. כלומר, מדובר בלמידה מחוזקת משמשת לתוכניות טיפול, תוך איסוף משוב באופן חוזר ונשנה (איטרטיבי) והשוואה מול הדאטה המקורית של כל פרופיל, כדי לקבוע את הטיפול היעיל ביותר לו.
כאשר מודלים אלה הופכים לעצמם, קשה יותר לקבוע את תהליך קבלת ההחלטות שלהם, מה שיכול להשפיע על העבודה, הבריאות והבטיחות שלנו.
#דוגמה
הנה דוגמה מהעולם הרפואי של רופאים והמטופלים שלהם:
בלמידה ללא פיקוח נוכל להשתמש כדי שהמודל יזהה קווי דמיון בין פרופילי מטופלים שונים ויאתר דפוסים שמתעוררים אצלם, כשהוא עושה זאת ללא הדרכה אנושית וללא פיקוח של רופאים ומומחים.
למידה מפוקחת, לעומת זאת, תסתמך על הקלט של הרופאים שיבצעו את האבחנה הסופית ויבדקו את הדיוק של חיזוי האלגוריתם. כלומר כאן המכונה תלמד מהמומחה, גם מהאבחנות המוצלחות שלו אך גם משגיאותיו. אם יוזנו למכונה נתונים של 2 קבוצות, חולים ובריאים, היא תזהה בעצמה מאפיינים שמשותפים לחולים במחלה מסוימת ושאינם נמצאים אצל אנשים בריאים. לאחר השוואה בין תחזיות המכונה לאבחון הסופי של המומחים, המכונה תלמד לזהות את התסמינים של המחלה ולסייע לרופאים לאבחן אותה נכון בעתיד.
למידת חיזוק תשמש לתכניות טיפול, בגישה איטרטיבית, תהליך חוזר ונשנה בו יוזן למכונה, שוב ושוב, המשוב החוזר על ידי הרופאים. המשוב יהיה לגבי יעילות התרופות, המינונים השונים ולגבי הטיפולים היעילים יותר ופחות, כך שהמודל ישווה יעילות של התרופות, המינונים והטיפולים לדאטה של החולה ויסיק מסקנות שיאפשרו לו לחזק בעתיד את הטיפולים המוצלחים והייחודיים יותר, אלו שיתאימו לפרופילי חולים, עם מאפיינים ומקרים שונים, לאור תגובות חולים משתנות, נסיבות שונות של המחלה ומצבי המחלה המגוונים לאורך הטיפול.
כלומר, החוקרים יכולים להשתמש במערכות למידת המכונה הללו ביחד, כדי לבנות מערכות בינה מלאכותית.
אבל - ויש כאן אבל משמעותי - יש לשים לב שככל שהמודלים הללו מכוונים באופן עצמאי, יהיה קשה יותר לקבוע כיצד האלגוריתמים השונים מגיעים לפתרונות שלהם, מה שיכול להיות בעל השפעה משמעותית על העבודה, הבריאות והבטיחות שלנו, בני האדם, כשאנו משתמשים בהם. לכן, באימון של מודלים גדולים (LLMs) משתמשים לרוב בכל השיטות הללו במקביל, כשלא פעם הן מאמנות אחת את השנייה.
הנה אימון מכונה פשוט (עברית):
https://youtu.be/CC-TGXxc-Go
כך המכונה לומדת ומדוע כדאי לשלב שיטות אימון שונות (מתורגם):
https://youtu.be/0yCJMt9Mx9c
וכך האלגוריתמים לומדים (מתורגם):
https://youtu.be/R9OHn5ZF4Uo?long=yes

הלמידה העמוקה (Deep Learning) היא טכנולוגיה שמאפשרת למערכות מחשב לחקות את פעולת המוח האנושי ולבצע למידה עצמית, תוך שיפור מתמיד המאפשר למערכת להיות חכמה יותר ויותר כל הזמן.
אבל מה ההבדל בין למידה עמוקה ללמידת מכונה?
אז ראשית, מבחינת מיון - דיפ לרנינג, בעברית למידה עמוקה, הוא תת-תחום של למידת מכונה.
אבל בעוד שב"למידת מכונה" (Machine Learning) קלאסית הלימוד הוא מתוך דאטה שתויג ואורגן מראש לשם כך, על ידי מי שמאמן את המכונה, בעזרת מה שנקרא "דאטה מתויג" (Labeled data), "למידה עמוקה" (Deep Learning) לומדת בעצמה - עם דאטה כמותי, כלומר מידע רב ולא מאורגן. למשל המוני דוגמאות לא מזוהות או מסודרות דווקא הניתנות לתוכנת הלמידה העמוקה והיא מייצרת את הסיווג וה"הבנה" של הדפוסים והסדר, שמאפשרים לה בהדרגה "להבין" את הדאטה הזה ולהפוך אותו לתובנות וידע, שגם הולך ומשתפר כל הזמן, כמו ילד שכל הזמן לומד דברים חדשים ורוכש תובנות טובות יותר על המציאות והחוקים ששוררים בה.
אם למידת מכונה זו למידת בית ספר, ממישהו שמלמד אותך ומתרגל אותך בלמידה, למידה עמוקה היא הלימוד אחרי שעת הלימודים - בשכונה, מתוך התבוננות, סקרנות ועיבוד נתונים עצמי.
משום כך, ככל שמערכת למידה עמוקה פועלת וככל שהיא בשימוש - היא משתפרת, יודעת יותר ויכולה לבצע משימות מורכבות יותר ובהצלחה הולכת וגדלה.
אז ההבדל בין למידה עמוקה ללמידת מכונה הוא בסיסי. בלמידת מכונה, כדי ללמוד ולהשתפר המערכת הממוחשבת צריכה מומחה אנושי, שיאתר תכונות מסוימות שעל פיהן הוא מאמן את המכונה או התוכנה.
בלמידה עמוקה, לעומת זאת, לא נדרשים בהכרח מי שיבצעו את האימון והארגון, התיוג והסידור של המידע בכדי שהמכונה תלמד. פשוט מזינים אליה המוני מקרים, למשל תמונות לזיהוי או מידע לניתוח, ונותנים לתוכנה לאתר בהם מאפיינים, הבדלים, דפוסים וכדומה. כך היא תזהה בעתיד דברים בתמונות או המלצות לשימוש במידע וכדומה. כך היא תלמד את עצמה כל הזמן ותהפוך יותר ויותר חכמה.
זה אולי גם קצת דומה לשני טיפוסי מורים. יש את המורים שמתעקשים להגיש לתלמידים את הידע "בכפית" ולהראות להם על מה להביט בלמידה, בעוד אחרים, נקרא להם "המלמדים העמוקים", נותנים לתלמידים לאתר את ההבדלים, להעלות השערות לגבי דפוסי מידע וחלוקה, להסיק מסקנות וכדומה.
אז כך, ממש כמו התלמידים אצל "המורה העמוק", תוכנת הלמידה העמוקה מקבלת בלמידה כזו המון "הזדמנויות" ללמוד בעצמה ולהתבגר. זאת במקום האימון על ידי אדם, שמתבטא בהוראות ואימון הממחישים לתוכנה מה לחפש בדאטה, כדי להבחין בין המקרים.
זו, אגב, גם הביקורת של המדענים על השיטה הזו. הם גורסים שלא נדרש עוד ממדענים להבין בעיה כדי לפתור אותה, מה שמביא לרדידות ולפתרון בעיות בניסוי וטעייה טכנולוגיים, במקום באמצעות תיאוריות מעמיקות ובחינתן באופן מדעי.
הנה הסבר פשוט של הלמידה העמוקה:
https://youtu.be/6M5VXKLf4D4
למידה עמוקה מחייבת יותר זמן, יותר דאטה ויותר כוח מחשוב מלמידת מכונה:
https://youtu.be/-SgkLEuhfbg
כך הולך ומתפתח עץ ההחלטות המשתפר של מערכת הלמידה העמוקה:
http://youtu.be/nSg4HKHdDs4
שיעור וידאו קצר על שיטות הלמידה השונות (עברית):
https://youtu.be/Bqdn6e-nH18?long=yes
והרצאה אקדמית על למידה עמוקה (עברית):
https://youtu.be/z-aezi4W90o?long=yes

איך מאמנים מכונות לראות ולזהות פנים?
יותר ויותר מדברים כיום על "האח הגדול", שעוקב אחרי כל אחד מאיתנו ויודע עלינו יותר ויותר. אנשים מתפלאים כיצד הוא מזהה בכל רגע נתון את מקומנו, מי אנחנו בתמונות הפרטיות שלנו ובפוסטים החברתיים ואם אנחנו מתכננים פשע או מותר לנו לבצע עיסקה מסחרית.
אבל כיצד זה מתבצע?
הדרך לזהות אותנו בכל מקום היא ללמד מחשבים לעשות זאת. מדובר במה שנקרא טכנולוגיית זיהוי פנים (Face recognition). כל מחשב כזה מחובר למצלמות שמראות לו פנים והמחשב מזהה אותנו לעומת אחרים.
השיטה מתחילה בללמד תוכנה לזהות אנשים. מזינים אליה מאגר תמונות ענקי ו"מלמדים" אותה מהם פנים ומה לא. עושים זאת בסימון הטעויות שלה, מה שמשפר כל הזמן את יכולותיה. ככל שהמאגר הוא גדול וכוח המיחשוב רב, המכונה תלמד טוב יותר ומהר יותר לזהות פנים.
ככל שהמאגר מגוון, לעומת זאת, המכונה תלמד לזהות יותר סוגי פנים. בתחילת הדרך המאגרים לא היו מגוונים מספיק, מה שגרם לכך שיכולות המחשבים והבינה המלאכותית לזהות נשים, או בני מיעוטים שאינם לבנים, היו נמוכות מאוד.
ככל שהמכונה תלמד מהם פנים, ניתן יהיה להזין אליה את התמונות של כולנו וללמד אותה לזהות אנשים ספציפיים. אז לממשלות ולגופי ביטחון יש מאגרים כאלה, מתצלומי תעודות הזהות שלנו, אבל לגופים אחרים יש בעיה.
אז המצב הזה של ראיית מכונה (Machine vision) הולך ומשתפר דווקא תודות למאגרים העצומים של הרשתות החברתיות. כך תורמת למשל הטכנולוגיה שמאפשרת לדפי פייסבוק לזהות את הפרצופים בתמונות, גם לטובת זיהוי מגוון יותר וחכם יותר.
כך פועלות מערכות לזיהוי פנים ומה המגבלות והבעיות בהן (עברית):
https://youtu.be/DJC013Cg_GY
הדרך בה מאמנים מודלים ממוחשבים לזהות פנים (מתורגם):
https://youtu.be/Cgxsv1riJhI
כיום הטכנולוגיה של זיהוי הפנים פועלת גם על פנים בתנועה:
https://youtu.be/kKaU6JFRu5g
כך פועלת טכנולוגיית זיהוי הפנים בתוכנה:
https://youtu.be/X7_ojlEXnWc
אפליקציות רבות משתמשות ביכולת זיהוי פנים:
https://youtu.be/NiKc1z4kOMM
זה מאפשר לענקיות רשת ומסחר לזהותכם ולגופי ביטחון למנוע פשעים וטרור, לאפשר כניסה למתחמים ועוד:
https://youtu.be/wve5JWX7yoc
והרצאת וידאו מעולה על ראיית מכונה שתסייע לכבדי ראיה לראות (מתורגם):
https://youtu.be/c-0ckmzlypA?long=yes
יותר ויותר מדברים כיום על "האח הגדול", שעוקב אחרי כל אחד מאיתנו ויודע עלינו יותר ויותר. אנשים מתפלאים כיצד הוא מזהה בכל רגע נתון את מקומנו, מי אנחנו בתמונות הפרטיות שלנו ובפוסטים החברתיים ואם אנחנו מתכננים פשע או מותר לנו לבצע עיסקה מסחרית.
אבל כיצד זה מתבצע?
הדרך לזהות אותנו בכל מקום היא ללמד מחשבים לעשות זאת. מדובר במה שנקרא טכנולוגיית זיהוי פנים (Face recognition). כל מחשב כזה מחובר למצלמות שמראות לו פנים והמחשב מזהה אותנו לעומת אחרים.
השיטה מתחילה בללמד תוכנה לזהות אנשים. מזינים אליה מאגר תמונות ענקי ו"מלמדים" אותה מהם פנים ומה לא. עושים זאת בסימון הטעויות שלה, מה שמשפר כל הזמן את יכולותיה. ככל שהמאגר הוא גדול וכוח המיחשוב רב, המכונה תלמד טוב יותר ומהר יותר לזהות פנים.
ככל שהמאגר מגוון, לעומת זאת, המכונה תלמד לזהות יותר סוגי פנים. בתחילת הדרך המאגרים לא היו מגוונים מספיק, מה שגרם לכך שיכולות המחשבים והבינה המלאכותית לזהות נשים, או בני מיעוטים שאינם לבנים, היו נמוכות מאוד.
ככל שהמכונה תלמד מהם פנים, ניתן יהיה להזין אליה את התמונות של כולנו וללמד אותה לזהות אנשים ספציפיים. אז לממשלות ולגופי ביטחון יש מאגרים כאלה, מתצלומי תעודות הזהות שלנו, אבל לגופים אחרים יש בעיה.
אז המצב הזה של ראיית מכונה (Machine vision) הולך ומשתפר דווקא תודות למאגרים העצומים של הרשתות החברתיות. כך תורמת למשל הטכנולוגיה שמאפשרת לדפי פייסבוק לזהות את הפרצופים בתמונות, גם לטובת זיהוי מגוון יותר וחכם יותר.
כך פועלות מערכות לזיהוי פנים ומה המגבלות והבעיות בהן (עברית):
https://youtu.be/DJC013Cg_GY
הדרך בה מאמנים מודלים ממוחשבים לזהות פנים (מתורגם):
https://youtu.be/Cgxsv1riJhI
כיום הטכנולוגיה של זיהוי הפנים פועלת גם על פנים בתנועה:
https://youtu.be/kKaU6JFRu5g
כך פועלת טכנולוגיית זיהוי הפנים בתוכנה:
https://youtu.be/X7_ojlEXnWc
אפליקציות רבות משתמשות ביכולת זיהוי פנים:
https://youtu.be/NiKc1z4kOMM
זה מאפשר לענקיות רשת ומסחר לזהותכם ולגופי ביטחון למנוע פשעים וטרור, לאפשר כניסה למתחמים ועוד:
https://youtu.be/wve5JWX7yoc
והרצאת וידאו מעולה על ראיית מכונה שתסייע לכבדי ראיה לראות (מתורגם):
https://youtu.be/c-0ckmzlypA?long=yes

דמיינו מודל AI שלא רק עונה לכם על השאלה ששאלתם אלא משתף אתכם בהסבר מפורט על סדר הפעולות שעשה בדרך לתשובה ובמהלך המחשבה שלו. נכון שזה מעולה? - זה מצוין כדי להבין, ללמוד, להשתפר וכמובן לאמת שהתשובה היא לא עוד הזיית AI, כמו שאנו מקבלים לעתים מהמודלים שלנו.
שרשרת מחשבה (Chain of thought ובקיצור COT) היא בדיוק שיטה כזו. טכניקה חדישה יחסית, שפותחה בתחום הבינה המלאכותית, לפיה הבינה מתבקשת לא רק לענות על שאלה, אלא להסביר ולשתף בכל שלב, בצעדים או בשלבים לקראת ועד הפיתרון. מכאן בא גם תרגום נוסף ואולי אף מדויק יותר בעברית של התהליך: "חשיבה מדורגת".
אם נדמיין לרגע שאנחנו מלמדים ילד לפתור בעיה מורכבת, סביר שלא נגיד לו את התשובה הסופית מיד. במקום זאת, נעדיף להוביל אותו אל הפתרון, בצעדים קטנים, צעד אחרי צעד. וזה בדיוק מה שקורה כשמתקשרים עם מודלים של בינה מלאכותית בדרך של שרשרת החשיבה, או החשיבה המדורגת.
באופן דומה, אפשר להנחות את הצ'טבוט כבר בפרומפט, לתת הסבר בשלבים של דרך הפתרון או ההגעה לתשובה ולא רק את התשובה עצמה.
#איך זה עובד בפועל?
זה לא מסובך. במקום לשאול "מה התשובה?", אפשר לכתוב למודל "בוא נחשוב על זה צעד אחרי צעד" או "הסבר לי את תהליך החשיבה שלך". התוצאה די מפתיעה: המודל הממושמע מתחיל לפרק את הבעיה לחלקים קטנים יותר, מסביר כל שלב בדרך ומוביל בהדרגה אל הפתרון המלא.
לטכניקה הזו יש משמעות מיוחדת בעולם הפרומפטים. כשאנחנו כותבים פרומפט חכם, אנחנו למעשה מזמינים את המודל לשתף אותנו בתהליך החשיבה שלו, בדיוק כמו תלמיד שמראה את כל שלבי הפתרון במחברת המתמטיקה. במקום לקבל תשובה יבשה וסופית, אנחנו מקבלים הצצה מרתקת אל תוך "המוח" של הבינה המלאכותית.
ושוב - לא מדובר רק על חקירת מידע, אלא על חקר הבינה האנושית עצמה. בדרך הזו אנו יכולים לחייב את הבינה להיות מאורגנת יותר ואולי אף ליפול פחות לאותן הזיות (Hallucinations), פריטי מידע שקריים או מטעים שלרוב מוצגים כעובדה.
#מה היתרון בשיטה הזו?
היתרון הגדול של שיטת "שרשרת המחשבה" הוא כפול: לא זו בלבד שהיא משפרת משמעותית את הדיוק של התשובות, אלא שהיא גם הופכת את כל התהליך לשקוף יותר. כשאנו, בני האדם, שותפים לתהליך המחשבה המודרגת הזו, ההרגשה היא כמו להציץ מעבר לכתפו של מומחה בזמן שהוא עובד - אנו לא רק רואים את התוצאה הסופית, אלא יכולים להבין בדיוק איך הגיעו אליה.
ובעידן שבו בינה מלאכותית הופכת לחלק בלתי נפרד מחיינו, היכולת להבין את תהליך החשיבה של מודל שפה או כל מכונה בינתית שהיא, היא לא רק יתרון, כי אחרי שמתנסים בה, מבינים כמה היא לעתים הכרחית.
הנה שרשרת מחשבה:
https://youtu.be/Fp-ue4UCE3s
הסבר יפה של ה-Chain of Thought:
https://youtu.be/4Iwnx2cVqtE
כך תשלטו בהנחיות שרשרת, באנגלית Chain prompting:
https://youtu.be/B4MR8m7V17A?long=yes
פודקסט AI על הסבר מפורט יותר על החשיבה המדורגת:
https://youtu.be/uo6y8oDrW3U?long=yes
והסבר מפורט יותר על זה:
https://youtu.be/C_gf9KNScIo?long=yes

בינה מלאכותית גנרטיבית (Generative AI), בעברית "בינה מלאכותית יוצרת", היא בינה מלאכותית שיכולה לייצר עבור המשתמש מגוון עצום של תוכן חדש. התוכן הזה משתרע על מגוון תחומים גדול, שהולך ומתפתח מיום ליום ובשימוש בצורת כלי איי, כלים שמאפשרים לייצר תכנים ותוצרים באופן מקוון, או בהתקנה על המחשב.
התוכן שבינה גנרטיבית יודעת לייצר כולל החל מטקסטים, דרך תמונות, סרטונים, מוסיקה, אנימציה ומגוון אדיר של סוגי מדיה ויישומים נוספים. ביניהם נכללים כתיבת קוד, עיצוב גרפי, תכניות באינספור תחומים, ניסוחי מכתבים, מאמרים וספרים ועוד.
#הבינה היוצרת יודעת לעשות 3 דברים עיקריים:
1. לקבל דאטה, כלומר נתונים מסוג כלשהו.
2. ללמוד מהדאטה הזה על הסוג.
3. לייצר לבקשת המשתמש תוצרים חדשים מסוג זה.
התקשורת בין המשתמש למודל השפה של בינה הגנרטיבית (LLM) מתבצעת כיום באמצעות כתיבה של פרומפט (Prompt), שהיא הנחייה מילולית בשפה טבעית, השפה הרגילה שלנו, כולל אנגלית, עברית וכדומה (ראו בתגית "פרומפטים").
לפרומפטים הללו מתווספים לעתים ממשקי משתמש נוספים, נוחים, קלים ולרוב גם יעילים יותר למתחילים. ביניהם אנו מוצאים תפריטים, כפתורים על המסך, תגיות, בחירת אפשרויות בכפתורי רדיו, קופסאות סימון וכדומה. כיום נכנס גם הממשק הקולי בו המשתמש משוחח עם מודל השפה וההוראות מתורגמות מקול לטקסט, על ידי ה-AI ומבוצעות מיד.
ההתחלה, אגב, של פיתוח המודלים הללו הייתה צנועה למדי. היא התבטאה בהכנסת קובץ סאונד כמו MP3 למערכת הבינה וקבלת התמלול שלו כטקסט כתוב. בהמשך הפיתוח הלכו השימושים בהם וגדלו, נעשו מורכבים ומדהימים יותר ויותר וכיום הבינה הגנרטיבית היא מפותחת להפליא.
בעיני רבים הבינה הגנרטיבית מאיימת כיום להחליף אנשים בעבודות שהם עושים. מומחים טוענים שזה לא מדויק ושמה שיוחלף הם תהליכי העבודה (בצירוף עובדים שלא יתעדכנו לחידושי ה-AI). לטענתם, תמיד יידרש המרכיב האנושי שיוודא שהשימוש בבינה המלאכותית ובמיוחד היצירתית, יהיה מוצלח.
אז כדי שיוכלו להמשיך לעבוד, העובדים יצטרכו להתעדכן, ללמוד ולהצטייד ביכולות חדשות, שיותאמו לדרישות החדשות של המעסיקים. קראו על כך בתגית "בינה מלאכותית גנרטיבית, אבטלה".
הנה הסבר על הבינה הגנרטיבית:
https://youtu.be/rwF-X5STYks
הבינה היצירתית והתחומים שהיא עתידה לשבש:
https://youtu.be/vneJieU5qlg
היכולות המטורפות של הבינה המלאכותית הגנרטיבית (עברית):
https://youtu.be/05oOucZmO8Y
התפתחות התחום הגנרטיבי כפי שהוא מוצג באחת מאלפי חברות Generative AI (עברית):
https://youtu.be/joJVqKTPVsY
מהי בינה גנרטיבית?
https://youtu.be/pWNAtUwnBS8
משמעות ה-AI הגנרטיבי בעולם הכתיבה העיתונאית:
https://youtu.be/3Jopz-V-IRQ
הנה הסבר מעמיק על הבינה המלאכותית היוצרת:
https://youtu.be/2IK3DFHRFfw?long=yes
אוסף חידושי וחדשות AI וידאו מדצמבר 2024:
https://youtu.be/30ZoRlr-TrY?long=yes
וסקירה מקיפה על הבינה המלאכותית הג'נרטיבית:
https://youtu.be/2IK3DFHRFfw?long=yes
מהם טוקנים ב-AI ולמידת מכונה?
מאסימוני הטלפונים ועד עולם אבטחת מערכות מחשוב, טוקן (Token), בעברית “אסימון”, הוא מושג המשתנה בהתאם להקשר שבו הוא מוזכר. אפילו בתוך עולם המחשבים יש למושג טוקן כמה שימושים.
בלמידת מכונה, אחת הזירות המרתקות של העידן המודרני והתחום בו פועלים מודלי השפה הפופולריים של ימינו, כמו Claude או ChatGPT, לטוקנים יש משמעות אדירה.
אותם מודלים גדולים, LLMs, הם מודלים מתמטיים. כדי לבצע את המשימות שאנו מבקשים מהם, תוך כדי תקשורת איתם בשפה טבעית, כמו אנגלית, עברית וכדומה, הם משתמשים בתהליך שנקרא "טוקניזציה" (Tokenization).
במרכז הטוקניזציה נעשה פילוח של הטקסטים שהמודלים הללו מקבלים כנתונים, כדאטה, ליחידות קטנות יותר, תרגום של חלקי המידע הקטנים למספרים, כשאת יחידות המידע הללו, שהומרו למספרים, הם ינתחו בהמשך.
כך, אחרי שמסתיימת הטוקניזציה, הם מייצרים מהמידע טוקנים, מספרים שכל אחד מהם מייצג פריט מידע קטן. ה"טוקן" משמש בהם בתפקיד "אסימון למידת המכונה", שמתאר באופן מתמטי את יחידות הטקסט הקטנות. אלה מעין יחידות מידה שהמודלים המוכרים יוצרים מהקונטקסט.
לאחר שסיימו להפוך את המידע לטוקנים, מרבית המודלים שאנו מכירים הטוקנים משמשים לייצוג של הטקסט, ביחידות קטנות שהמודל מעבד בצורה מתמטית.
כשאנו משתמשים בטוקנים, זה כדי לסייע למודל להבין את המבנה של הטקסט, כך שיוכל לבצע על פיו את החישובים שלו. טוקן אחד יכול להיות כל חלק ממילה בשפה הרגילה שלנו, או אפילו תו אחד.
כדי להבין ולהגיב לקלט, המודל משתמש בכמות מסוימת של טוקנים. וטוקן יכול להיות כל פיסת מידע, מתו בודד ועד מילה שלמה ולעתים גם יותר. יש שיטות שונות של טוקניזציה והבחירה ביניהן היא בהתאם לאלגוריתם בו משתמשים. יש שהאסימון הוא לפי תווים (Character tokenization), אסימון לפי מילים, לפי משפט, ביטויים, טוקניזציה לפי מילת משנה ולפי מספר.
בשיחה על מודל AI (ה-LLM, כמו ChatGPT או Claude) משמש הטוקן לציון גודל השיחה על המודל והיקף המידע שיכול להיות בה. לכל מודל יש מגבלה של זיכרון התוכן שהוא יכול לעבד בשיחה אחת ולהתבסס עליו בתשובות שלו ובמהלך השיחה.
כל הטקסט שהמודל מכיל ובא מהקלט שמזרים לו המשתמש, כולל השאלות והתשובות וכל מידע נוסף, כל אלו מכונים "קונטקסט" (Context), כלומר "ההקשר".
חלון ההקשר (Context window), או "חלון הקונטקסט", מייצג את כמות התוכן שהמודל יכול לעבד בשיחה עם משתמש. הכמות הזו נספרת בטוקנים. אם קלוד, למשל, תומך ב-200 אלף טוקנים, זה אומר שהשיחה יכולה לכלול כ-40 אלף מילים. אם לג'מיני של גוגל יש מיליון טוקנים, זה אומר פי 5 יותר מילים וגודל חלון הקונטקסט שלה, כלומר השיחות עם ג'מיני הוא של כ-2 ספרים ממוצעים.
גם מהירויות של מודלים מודגמת לא פעם בטוקנים לשנייה. לא נדיר לראות השוואת מהירויות כמו "מודל ה-Sonar החדש של Perplexity מגיע לביצועים של עד 1200 טוקנים לשניה, בהשוואה ל-75 טוקנים לשניה בלבד של המודל Claude 3.5 Sonnet" או 140 טוקנים לשניה של Gemini 2.0 Flash של גוגל".
טוקניזציה כפי שהיא נעשית בידי מדעני נתונים:
https://youtu.be/fNxaJsNG3-s
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
הסבר של Machine Learning Token באנגלית:
https://youtu.be/mnqXgojQCJI
וטוקניזציה באתרי אינטרנט שיכולה לשמש בהקשר אחר כאמצעי אבטחה:
https://youtu.be/Y7I4IDojhJk
מאסימוני הטלפונים ועד עולם אבטחת מערכות מחשוב, טוקן (Token), בעברית “אסימון”, הוא מושג המשתנה בהתאם להקשר שבו הוא מוזכר. אפילו בתוך עולם המחשבים יש למושג טוקן כמה שימושים.
בלמידת מכונה, אחת הזירות המרתקות של העידן המודרני והתחום בו פועלים מודלי השפה הפופולריים של ימינו, כמו Claude או ChatGPT, לטוקנים יש משמעות אדירה.
אותם מודלים גדולים, LLMs, הם מודלים מתמטיים. כדי לבצע את המשימות שאנו מבקשים מהם, תוך כדי תקשורת איתם בשפה טבעית, כמו אנגלית, עברית וכדומה, הם משתמשים בתהליך שנקרא "טוקניזציה" (Tokenization).
במרכז הטוקניזציה נעשה פילוח של הטקסטים שהמודלים הללו מקבלים כנתונים, כדאטה, ליחידות קטנות יותר, תרגום של חלקי המידע הקטנים למספרים, כשאת יחידות המידע הללו, שהומרו למספרים, הם ינתחו בהמשך.
כך, אחרי שמסתיימת הטוקניזציה, הם מייצרים מהמידע טוקנים, מספרים שכל אחד מהם מייצג פריט מידע קטן. ה"טוקן" משמש בהם בתפקיד "אסימון למידת המכונה", שמתאר באופן מתמטי את יחידות הטקסט הקטנות. אלה מעין יחידות מידה שהמודלים המוכרים יוצרים מהקונטקסט.
לאחר שסיימו להפוך את המידע לטוקנים, מרבית המודלים שאנו מכירים הטוקנים משמשים לייצוג של הטקסט, ביחידות קטנות שהמודל מעבד בצורה מתמטית.
כשאנו משתמשים בטוקנים, זה כדי לסייע למודל להבין את המבנה של הטקסט, כך שיוכל לבצע על פיו את החישובים שלו. טוקן אחד יכול להיות כל חלק ממילה בשפה הרגילה שלנו, או אפילו תו אחד.
כדי להבין ולהגיב לקלט, המודל משתמש בכמות מסוימת של טוקנים. וטוקן יכול להיות כל פיסת מידע, מתו בודד ועד מילה שלמה ולעתים גם יותר. יש שיטות שונות של טוקניזציה והבחירה ביניהן היא בהתאם לאלגוריתם בו משתמשים. יש שהאסימון הוא לפי תווים (Character tokenization), אסימון לפי מילים, לפי משפט, ביטויים, טוקניזציה לפי מילת משנה ולפי מספר.
בשיחה על מודל AI (ה-LLM, כמו ChatGPT או Claude) משמש הטוקן לציון גודל השיחה על המודל והיקף המידע שיכול להיות בה. לכל מודל יש מגבלה של זיכרון התוכן שהוא יכול לעבד בשיחה אחת ולהתבסס עליו בתשובות שלו ובמהלך השיחה.
כל הטקסט שהמודל מכיל ובא מהקלט שמזרים לו המשתמש, כולל השאלות והתשובות וכל מידע נוסף, כל אלו מכונים "קונטקסט" (Context), כלומר "ההקשר".
חלון ההקשר (Context window), או "חלון הקונטקסט", מייצג את כמות התוכן שהמודל יכול לעבד בשיחה עם משתמש. הכמות הזו נספרת בטוקנים. אם קלוד, למשל, תומך ב-200 אלף טוקנים, זה אומר שהשיחה יכולה לכלול כ-40 אלף מילים. אם לג'מיני של גוגל יש מיליון טוקנים, זה אומר פי 5 יותר מילים וגודל חלון הקונטקסט שלה, כלומר השיחות עם ג'מיני הוא של כ-2 ספרים ממוצעים.
גם מהירויות של מודלים מודגמת לא פעם בטוקנים לשנייה. לא נדיר לראות השוואת מהירויות כמו "מודל ה-Sonar החדש של Perplexity מגיע לביצועים של עד 1200 טוקנים לשניה, בהשוואה ל-75 טוקנים לשניה בלבד של המודל Claude 3.5 Sonnet" או 140 טוקנים לשניה של Gemini 2.0 Flash של גוגל".
טוקניזציה כפי שהיא נעשית בידי מדעני נתונים:
https://youtu.be/fNxaJsNG3-s
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
הסבר של Machine Learning Token באנגלית:
https://youtu.be/mnqXgojQCJI
וטוקניזציה באתרי אינטרנט שיכולה לשמש בהקשר אחר כאמצעי אבטחה:
https://youtu.be/Y7I4IDojhJk
מה היה החורף של הבינה המלאכותית?
החורף של הבינה המלאכותית (The winter of artificial intelligence), או "חורף ה-AI", הוא מונח המתאר תקופה משמעותית בהיסטוריה של מדעי המחשב והטכנולוגיה. תקופה זו, שהתרחשה בעיקר בשנות ה-70 של המאה ה-20, סימנה נקודת מפנה בהתפתחות הבינה המלאכותית ובתפיסה הציבורית שלה.
בתחילת דרכה, בשנות ה-50 וה-60, הבינה המלאכותית הייתה מושא להתלהבות ואופטימיות רבה. חוקרים ומדענים הצליחו לפתח מערכות שיכלו לבצע משימות בסיסיות כמו משחק שחמט ופתרון בעיות מתמטיות פשוטות. ההישגים הללו יצרו ציפיות גבוהות לגבי העתיד, והאמונה הרווחת הייתה שבקרוב נראה מכונות חושבות ברמה אנושית.
אולם, עם כניסת שנות ה-70, החלה להתפשט תחושת פיכחון. התברר כי המערכות שפותחו היו מוגבלות מאוד ביכולותיהן, המחשבים לא ענו על הציפיות הגבוהות שתלו בהם ודרשו תכנות מורכב ומפורט, אפילו לביצוע של מטלות פשוטות יחסית. גם מדענים מצאו את עצמם מתקשים ללמד מחשבים דברים בסיסיים שתינוק יודע לעשות, כמו להבין משפטים על פי ההקשר שלהם ושפה בכלל. הטרידו גם העלויות הגבוהות במיוחד שהיו כרוכות בפיתוח והתחושה בתחום הייתה שהתוצאות לא עומדות בציפיות הגבוהות שנוצרו בעשורים הקודמים.
כתוצאה מכך, ההתלהבות והאופוריה סביב הבינה המלאכותית דעכו. המימון למחקר ופיתוח בתחום הצטמצם באופן דרמטי, וחלק מהחוקרים המובילים עברו לתחומים אחרים. תקופה זו סימנה האטה משמעותית בהתקדמות התחום, והובילה לספקנות רבה לגבי היכולת להגשים את החזון של מכונות חושבות.
חוקרים שונים מגדירים אחרת את אורך התקופה. יש הטוענים שהתקוות המנופצות בחורף של הבינה המלאכותית נמשך עד שנות ה-80, כשתחום ה-AI מתחיל לחוות פריחה מחודשת ואיטית, כשבין השאר שווקו לראשונה מכונות ה-LISP, מכונות הבינה המלאכותית הראשונות. אחרים טוענים שהאביב של הבינה המלאכותית מגיע רק באמצע שנות ה-2000. אין ויכוח שהשינוי הונע, בין השאר, מפיתוח "מערכות המומחה", מערכות ממוחשבות שנועדו לחקות את יכולות קבלת ההחלטות של מומחה אנושי בתחומים ספציפיים. התפתחויות אלו סימנו את תחילתו של "האביב" החדש בבינה מלאכותית.
וכך, בתוך עשור מאז 2005, השתנו מקצה לקצה התפיסה לגבי הבינה המלאכותית והתחזיות לגביה. מי שהובילו לכך היו קבוצות שונות של חוקרים, שניסו בהתמדה לפתח "מוח ממוחשב". הגישה התבססה על הרעיון שהמוח האנושי הוא אוסף רכיבים, המחוברים ביניהם כשלכל אחד מהם תפקיד עצמאי משלו. השינוי שהובילו אותן קבוצות, בהשראת מדעי המוח, היה "הלמידה העמוקה", גישה לבניית מכונות תבוניות, ברעיון שהחל להבשיל ולהתפתח יותר ויותר.
את התוצרים של השינוי המאסיבי הזה אנחנו רואים היום, בעידן הבינה המלאכותית הגנרטיבית, המכונות הלומדות ואינסוף הפיתוחים שמתפוצצים מול עינינו ומושתתים על Deep Learning, אותה "למידה עמוקה", שבה המחשב לומד ומלמד, למעשה, את עצמו.
השפעתו של חורף הבינה המלאכותית חרגה מעבר לתחום המדעי והטכנולוגי. הוא השפיע באופן עמוק על התפיסה הציבורית של התחום, וסימן מעבר מאופטימיות מופרזת לגישה מפוכחת יותר לגבי האפשרויות והמגבלות של טכנולוגיה זו. תקופה זו עיצבה את הדרך שבה אנו מתייחסים לבינה מלאכותית עד היום, ומזכירה לנו את החשיבות של שמירה על ציפיות ריאליסטיות לצד המשך החדשנות והפיתוח הטכנולוגי.
למרות שהחורף של הבינה המלאכותית נתפס בזמנו כתקופה של נסיגה, בראייה לאחור ניתן לראות בו שלב הכרחי בהתפתחות התחום. הוא אילץ את החוקרים לבחון מחדש את הנחות היסוד שלהם ולפתח גישות חדשות ומציאותיות יותר, שבסופו של דבר הובילו להתקדמויות המשמעותיות שאנו עדים להן כיום בעולם הבינה המלאכותית.
הנה סיפור החורף של הבינה המלאכותית:
https://youtu.be/w_v5lumtoPk
כך משתלב חורף הבינה המלאכותית בתולדות ה-AI כשלב קשה ומשתק:
https://youtu.be/yaL5ZMvRRqE
וכך קידמה למידת המכונה את הבינה המלאכותית לשלב הבא (מתורגם):
https://youtu.be/f_uwKZIAeM0
החורף של הבינה המלאכותית (The winter of artificial intelligence), או "חורף ה-AI", הוא מונח המתאר תקופה משמעותית בהיסטוריה של מדעי המחשב והטכנולוגיה. תקופה זו, שהתרחשה בעיקר בשנות ה-70 של המאה ה-20, סימנה נקודת מפנה בהתפתחות הבינה המלאכותית ובתפיסה הציבורית שלה.
בתחילת דרכה, בשנות ה-50 וה-60, הבינה המלאכותית הייתה מושא להתלהבות ואופטימיות רבה. חוקרים ומדענים הצליחו לפתח מערכות שיכלו לבצע משימות בסיסיות כמו משחק שחמט ופתרון בעיות מתמטיות פשוטות. ההישגים הללו יצרו ציפיות גבוהות לגבי העתיד, והאמונה הרווחת הייתה שבקרוב נראה מכונות חושבות ברמה אנושית.
אולם, עם כניסת שנות ה-70, החלה להתפשט תחושת פיכחון. התברר כי המערכות שפותחו היו מוגבלות מאוד ביכולותיהן, המחשבים לא ענו על הציפיות הגבוהות שתלו בהם ודרשו תכנות מורכב ומפורט, אפילו לביצוע של מטלות פשוטות יחסית. גם מדענים מצאו את עצמם מתקשים ללמד מחשבים דברים בסיסיים שתינוק יודע לעשות, כמו להבין משפטים על פי ההקשר שלהם ושפה בכלל. הטרידו גם העלויות הגבוהות במיוחד שהיו כרוכות בפיתוח והתחושה בתחום הייתה שהתוצאות לא עומדות בציפיות הגבוהות שנוצרו בעשורים הקודמים.
כתוצאה מכך, ההתלהבות והאופוריה סביב הבינה המלאכותית דעכו. המימון למחקר ופיתוח בתחום הצטמצם באופן דרמטי, וחלק מהחוקרים המובילים עברו לתחומים אחרים. תקופה זו סימנה האטה משמעותית בהתקדמות התחום, והובילה לספקנות רבה לגבי היכולת להגשים את החזון של מכונות חושבות.
חוקרים שונים מגדירים אחרת את אורך התקופה. יש הטוענים שהתקוות המנופצות בחורף של הבינה המלאכותית נמשך עד שנות ה-80, כשתחום ה-AI מתחיל לחוות פריחה מחודשת ואיטית, כשבין השאר שווקו לראשונה מכונות ה-LISP, מכונות הבינה המלאכותית הראשונות. אחרים טוענים שהאביב של הבינה המלאכותית מגיע רק באמצע שנות ה-2000. אין ויכוח שהשינוי הונע, בין השאר, מפיתוח "מערכות המומחה", מערכות ממוחשבות שנועדו לחקות את יכולות קבלת ההחלטות של מומחה אנושי בתחומים ספציפיים. התפתחויות אלו סימנו את תחילתו של "האביב" החדש בבינה מלאכותית.
וכך, בתוך עשור מאז 2005, השתנו מקצה לקצה התפיסה לגבי הבינה המלאכותית והתחזיות לגביה. מי שהובילו לכך היו קבוצות שונות של חוקרים, שניסו בהתמדה לפתח "מוח ממוחשב". הגישה התבססה על הרעיון שהמוח האנושי הוא אוסף רכיבים, המחוברים ביניהם כשלכל אחד מהם תפקיד עצמאי משלו. השינוי שהובילו אותן קבוצות, בהשראת מדעי המוח, היה "הלמידה העמוקה", גישה לבניית מכונות תבוניות, ברעיון שהחל להבשיל ולהתפתח יותר ויותר.
את התוצרים של השינוי המאסיבי הזה אנחנו רואים היום, בעידן הבינה המלאכותית הגנרטיבית, המכונות הלומדות ואינסוף הפיתוחים שמתפוצצים מול עינינו ומושתתים על Deep Learning, אותה "למידה עמוקה", שבה המחשב לומד ומלמד, למעשה, את עצמו.
השפעתו של חורף הבינה המלאכותית חרגה מעבר לתחום המדעי והטכנולוגי. הוא השפיע באופן עמוק על התפיסה הציבורית של התחום, וסימן מעבר מאופטימיות מופרזת לגישה מפוכחת יותר לגבי האפשרויות והמגבלות של טכנולוגיה זו. תקופה זו עיצבה את הדרך שבה אנו מתייחסים לבינה מלאכותית עד היום, ומזכירה לנו את החשיבות של שמירה על ציפיות ריאליסטיות לצד המשך החדשנות והפיתוח הטכנולוגי.
למרות שהחורף של הבינה המלאכותית נתפס בזמנו כתקופה של נסיגה, בראייה לאחור ניתן לראות בו שלב הכרחי בהתפתחות התחום. הוא אילץ את החוקרים לבחון מחדש את הנחות היסוד שלהם ולפתח גישות חדשות ומציאותיות יותר, שבסופו של דבר הובילו להתקדמויות המשמעותיות שאנו עדים להן כיום בעולם הבינה המלאכותית.
הנה סיפור החורף של הבינה המלאכותית:
https://youtu.be/w_v5lumtoPk
כך משתלב חורף הבינה המלאכותית בתולדות ה-AI כשלב קשה ומשתק:
https://youtu.be/yaL5ZMvRRqE
וכך קידמה למידת המכונה את הבינה המלאכותית לשלב הבא (מתורגם):
https://youtu.be/f_uwKZIAeM0
מהו המחשוב הקוגניטיבי?
יתכן ששאלתם את עצמכם פעם איך זה שהמחשבים המשוכללים והמהירים כל כך יכולים לבצע כיום משימות שלא ייאמנו, אבל לא מסוגלים לבצע דברים שאפילו תינוקות עושים בקלות.
מזיהוי אנשים ועד להבנת השפה המדוברת, דרך למידה מטעויות או הבנת ההקשר בשיחה, להסיק מסקנות ועוד, יש לא מעט דברים שבני אדם מקבלים כמובנים מאליהם ואף כפשוטים, בעוד המחשבים מתקשה בהם מאד.
בדיוק לשם כך נוצר תחום חשוב במדעי המחשב. מחשוב קוגניטיבי (cognitive computing) הוא תחום בתוכנה המדמה את החשיבה האנושית.
מדובר בתוכנות שאמורות להיות מסוגלות לבנות ולנתח ידע, לבצע תהליך ארוך ומשמעותי של למידה עצמית, להבין את המידע לעומקו, לנתח טקסטים בצורה תבונית ולתקשר עם בני אדם בדרך שמבינה מצבי רוח, הקשרים חברתיים ואישיים ועוד, בקיצור כל דבר מהמרכיבים הקטנים של השפה האנושית ועד לסתם ללמוד מהניסיון.
במחשוב הקוגניטיבי מנסים לשלב בין יכולות שונות, שחלקן בפיתוח כבר שנים רבות. למידת מכונה, כריית מידע, זיהוי עצמים ייחודיים בתמונות, עיבוד שפה טבעית או איתור של דפוסים ותבניות במידע גולמי - כל אלה ואחרות אמורות לאפשר יצירה של מחשב שיכול לחקות את הדרך בה המוח האנושי עובד ולהפיק תוצאות ברמה גבוהה במיוחד, לקבל החלטות חכמות ועוד.
אם זה מזכיר לכם תחומים כמו אינטליגנציה מלאכותית או למידת מכונה, זה לא מקרה. מדובר בתחומי מחקר קרובים ומשיקים בהרבה מובנים.
מטרת החוקרים והמהנדסים העוסקים בתחום המחשוב הקוגניטיבי להביא לכך שבעתיד יוכלו מחשבים לבצע משימות פשוטות עבור בני-אדם, כמו חשיבת מומחה והבנת השפה האנושית.
כמובן שבצד פעולות "אנושיות" אלה ישלבו המחשבים גם את יכולותיהם המסורתיות כמו עיבוד נתונים בכמויות עצומות, מה שמוכר מתחום הביג דאטה, על מנת להפוך ליועצים נבונים לאנשי מקצוע בתחומים שונים, מרפואה ועד מדע והייטק.
יישומים נוספים שמצפים לפתח בעזרת מחשבים קוגניטיביים הם מערכות תקשורת בשפה טבעית, "נהגים ממוחשבים" ברכבים אוטונומיים (מכונית ללא נהג), עיבוד סמנטי, מנועי חיפוש שלומדים ועוד.
הנה המחשוב הקוגניטיבי המודרני בחצי דקה:
https://youtu.be/1tsFTBqXDdI
מצגת וידאו שמראה מה מאפשרות מערכות מחשוב קוגניטיביות:
https://youtu.be/1mPO-rXcmaw
מומחים מחברת יבמ מסבירים על העתיד של המחשוב הקוגניטיבי:
https://youtu.be/xRamODPdU1U
עולם זיהוי העצמים הממוחשב (מתורגם):
https://youtu.be/Cgxsv1riJhI?long=yes
והאם אנו מתקרבים למחשבים עם תודעה:
https://youtu.be/JTOMNkZJRao?long=yes
יתכן ששאלתם את עצמכם פעם איך זה שהמחשבים המשוכללים והמהירים כל כך יכולים לבצע כיום משימות שלא ייאמנו, אבל לא מסוגלים לבצע דברים שאפילו תינוקות עושים בקלות.
מזיהוי אנשים ועד להבנת השפה המדוברת, דרך למידה מטעויות או הבנת ההקשר בשיחה, להסיק מסקנות ועוד, יש לא מעט דברים שבני אדם מקבלים כמובנים מאליהם ואף כפשוטים, בעוד המחשבים מתקשה בהם מאד.
בדיוק לשם כך נוצר תחום חשוב במדעי המחשב. מחשוב קוגניטיבי (cognitive computing) הוא תחום בתוכנה המדמה את החשיבה האנושית.
מדובר בתוכנות שאמורות להיות מסוגלות לבנות ולנתח ידע, לבצע תהליך ארוך ומשמעותי של למידה עצמית, להבין את המידע לעומקו, לנתח טקסטים בצורה תבונית ולתקשר עם בני אדם בדרך שמבינה מצבי רוח, הקשרים חברתיים ואישיים ועוד, בקיצור כל דבר מהמרכיבים הקטנים של השפה האנושית ועד לסתם ללמוד מהניסיון.
במחשוב הקוגניטיבי מנסים לשלב בין יכולות שונות, שחלקן בפיתוח כבר שנים רבות. למידת מכונה, כריית מידע, זיהוי עצמים ייחודיים בתמונות, עיבוד שפה טבעית או איתור של דפוסים ותבניות במידע גולמי - כל אלה ואחרות אמורות לאפשר יצירה של מחשב שיכול לחקות את הדרך בה המוח האנושי עובד ולהפיק תוצאות ברמה גבוהה במיוחד, לקבל החלטות חכמות ועוד.
אם זה מזכיר לכם תחומים כמו אינטליגנציה מלאכותית או למידת מכונה, זה לא מקרה. מדובר בתחומי מחקר קרובים ומשיקים בהרבה מובנים.
מטרת החוקרים והמהנדסים העוסקים בתחום המחשוב הקוגניטיבי להביא לכך שבעתיד יוכלו מחשבים לבצע משימות פשוטות עבור בני-אדם, כמו חשיבת מומחה והבנת השפה האנושית.
כמובן שבצד פעולות "אנושיות" אלה ישלבו המחשבים גם את יכולותיהם המסורתיות כמו עיבוד נתונים בכמויות עצומות, מה שמוכר מתחום הביג דאטה, על מנת להפוך ליועצים נבונים לאנשי מקצוע בתחומים שונים, מרפואה ועד מדע והייטק.
יישומים נוספים שמצפים לפתח בעזרת מחשבים קוגניטיביים הם מערכות תקשורת בשפה טבעית, "נהגים ממוחשבים" ברכבים אוטונומיים (מכונית ללא נהג), עיבוד סמנטי, מנועי חיפוש שלומדים ועוד.
הנה המחשוב הקוגניטיבי המודרני בחצי דקה:
https://youtu.be/1tsFTBqXDdI
מצגת וידאו שמראה מה מאפשרות מערכות מחשוב קוגניטיביות:
https://youtu.be/1mPO-rXcmaw
מומחים מחברת יבמ מסבירים על העתיד של המחשוב הקוגניטיבי:
https://youtu.be/xRamODPdU1U
עולם זיהוי העצמים הממוחשב (מתורגם):
https://youtu.be/Cgxsv1riJhI?long=yes
והאם אנו מתקרבים למחשבים עם תודעה:
https://youtu.be/JTOMNkZJRao?long=yes
איך יוצרים סרטים וסרטונים ב-AI?
כלי יצירת וידאו בעזרת בינה מלאכותית גנרטיבית מתפתחים במהירות אדירה. עד לא מזמן זו הייתה המהפכה הבאה של הבינה המלאכותית, אבל מהירות הפיתוח של הטכנולוגיה הזו, כמו כל תחום הבינה הגנרטיבית, היא בלתי נתפסת ולכן היא כבר כאן ולא עוצרת לרגע.
וכך, נוסקים מה שהיו שנה קודם סרטונים של 4-5 שניות באיכות תמונה בסיסית עד נמוכה והבנה בינונית למדי של הפרומפטים (ההנחיות הטקסטואליות שבהן מתאר המשתמש את התוצאה המבוקשת). בתוך שנה הם הפכו לסרטונים מעולים, באיכות תמונה מעולה, היצמדות להנחיות הפרומפט ומאפשרים לבקש זוויות צילום, סוגי שוטים, סוג או ז'אנר הסרט ועוד.
וגם קהילת הקוד הפתוח (ראו בתגית "קוד פתוח") לא טומנת ידה בצלחת. לעומת מודלים מסחריים סגורים ויקרים למשתמש, המודלים שלהם מאפשרים יצירת סרטונים בארכיטקטורה עם שקיפות וחדשנות וללא עלות, תוך אימוץ של טכנולוגיות AI מהחדשניות ביותר, גם בחינם להורדה והרצה על המחשב המשתמש וגם אונליין, בהגבלות בשל העלות שעולה לשתפן כך.
מדהים לחשוב שמה שבעבר צולם באלפי דולרים מינימום לשניה של סרט, נוצר עכשיו בכמה פקודות מקלדת, שמייצרות סרטונים שווי ערך להפקה מורכבת, יקרה, עתירת מקצוענות וכוח אדם, כשלא פעם ביצועי אפקטים מיוחדים ו-CGI, יקרים ומורכבים לצילום, מוחלפים במחי פקודת מקלדת פשוטה ודמיון מפותח של היוצרים.
היום הבינה המלאכותית יוצרת סרטונים מעולים וברמה מטורפת, אפילו על בסיס של תמונות סטילס (תמונות רגילות), שהועלו אליה ונוספה להם הנחייה שאומרת מה "עושים" האובייקטים שבתמונה כשהם "משתתפים בצילומים".
וזה בדיוק מה שמדאיג היום רבים בתעשיית הקולנוע. קשה להימלט מהמחשבה כמה ואילו מקצועות עומדים להיעלם בקרוב מהעולם, מהמסך, הגדול או הקטן. בצל הקדמה הזו עלולים כמה א.נשים לאבד את פרנסתם. החלפתם הצפויה בבינה מלאכותית תהיה כי היא זולה, יעילה, צייתנית וכזו שאף פעם לא חולה, לא עצובה ולא מאחרת, כי הילד שלה מרגיש לא טוב בבית...
אז לצד זה שהבינה המלאכותית מרגשת, תורמת ליצירתיות וגלומות בה אינספור אפשרויות בלתי נגמרות, היא טומנת בחובה גם איומים וסכנות לאנושות ולנו בני האדם. תעשיית הקולנוע כולה עלולה להיות מוחלפת בהדרגה במיליוני רובוטים שקוראים להם AI ואין להם אפילו גוף לחבוט בו. רק אינטליגנציה מלאכותית, שלא מרחמת ולא חומלת, כי היא עושה רק מה שאומרים לה. במקלדת, כן?
הפתרון, כי חייבים לדבר אופטימית שוטפת, הוא ללמוד את הכלים החדשים הללו. יידע כל מקצוען קולנוע שבמקום להיות מוחלף ב-AI, עדיף לדעת AI ולהשתלב בעולם החדש הזה.
הנה Google Veo 2 המוביל:
https://youtu.be/VNWLHAnRc0o
הכלי האינטגרטיבי שעושה תהליך שלם מפרומפט קטן:
https://youtu.be/Aw1TQwkCLQs
מודל וידאו בינתי ישראלי (עברית):
https://youtu.be/CkpLiPWLcHo
אפשרויות הווידאו AI שהולכות ומתפתחות במהירות - הנה Neurawik:
https://youtu.be/1HVkzZiv82Q
Sora רצה להחליף את עשיית הסרטים הרגילה (עברית)
https://youtu.be/kx3H1jFHncY
דברים שרק AI יכול לעשות (ללא מילים):
https://youtu.be/f-Vbm-iQ_Xw
הדרכה ל-Image to Video שהופכת תמונה לסרטון וידאו (עברית):
https://youtu.be/mR3rN8vphC8
קליפ AI של שיר של הביטלס:
https://youtu.be/Z9MZdNrGbM4
כך יוצרים מתמונות בעזרת פרומפט וידאו AI בקלות עם Minimax (עברית):
https://youtu.be/F-gl4E5yo60
כך יוצרים לייב פורטרייט - דיוקן עם מחוות שלכם:
https://youtu.be/kM3KSrPrh9c
קליפ מתמונה בשיטה של Image to video:
https://youtu.be/yCczY9PNeao
קדימון AI מדומה לסרט מד"ב שאולי יצולם:
https://youtu.be/oAIrJP4n5sQ
כך מחליפים פנים לדמויות וידאו ב-Faceswap:
https://youtu.be/vVs0DZ8VyGQ
מינימקס המטורף בווידאו AI:
https://youtu.be/4QXCV_TYKZc?long=yes
הנה Dream Machine של לומה:
https://youtu.be/N_hlfwWtgPQ?long=yes
על סקיצה של ג'ון לנון שהושלמה 40 שנה אחרי מותו עם קליפ משולב דמויות AI:
https://youtu.be/APJAQoSCwuA?long=yes
Magic Hour AI - כלי שיוצר סרטונים עד 60 שניות, שזה הכי הרבה:
https://youtu.be/eSpuvmRhcPg?long=yes
KREA - מודל ליצירת סרטונים AI:
https://youtu.be/OBewafac0Xs?long=yes
MINIMAX - עוד מודל וידאו מדהים מסין:
https://youtu.be/7JZLLxV1AGc?long=yes
כלי וידאו שמייצר ישר סרטון רב-סצנות:
https://youtu.be/BCCUNiToo94?long=yes
כלי הווידאו המומלצים לתחילת 2025:
https://youtu.be/K04zRJ8Vl_s?long=yes
וכך מייצרים סרטי וידאו ארוכים ב-Canva תחילת 2025:
https://youtu.be/tWmVbn4rUd0?long=yes
כלי יצירת וידאו בעזרת בינה מלאכותית גנרטיבית מתפתחים במהירות אדירה. עד לא מזמן זו הייתה המהפכה הבאה של הבינה המלאכותית, אבל מהירות הפיתוח של הטכנולוגיה הזו, כמו כל תחום הבינה הגנרטיבית, היא בלתי נתפסת ולכן היא כבר כאן ולא עוצרת לרגע.
וכך, נוסקים מה שהיו שנה קודם סרטונים של 4-5 שניות באיכות תמונה בסיסית עד נמוכה והבנה בינונית למדי של הפרומפטים (ההנחיות הטקסטואליות שבהן מתאר המשתמש את התוצאה המבוקשת). בתוך שנה הם הפכו לסרטונים מעולים, באיכות תמונה מעולה, היצמדות להנחיות הפרומפט ומאפשרים לבקש זוויות צילום, סוגי שוטים, סוג או ז'אנר הסרט ועוד.
וגם קהילת הקוד הפתוח (ראו בתגית "קוד פתוח") לא טומנת ידה בצלחת. לעומת מודלים מסחריים סגורים ויקרים למשתמש, המודלים שלהם מאפשרים יצירת סרטונים בארכיטקטורה עם שקיפות וחדשנות וללא עלות, תוך אימוץ של טכנולוגיות AI מהחדשניות ביותר, גם בחינם להורדה והרצה על המחשב המשתמש וגם אונליין, בהגבלות בשל העלות שעולה לשתפן כך.
מדהים לחשוב שמה שבעבר צולם באלפי דולרים מינימום לשניה של סרט, נוצר עכשיו בכמה פקודות מקלדת, שמייצרות סרטונים שווי ערך להפקה מורכבת, יקרה, עתירת מקצוענות וכוח אדם, כשלא פעם ביצועי אפקטים מיוחדים ו-CGI, יקרים ומורכבים לצילום, מוחלפים במחי פקודת מקלדת פשוטה ודמיון מפותח של היוצרים.
היום הבינה המלאכותית יוצרת סרטונים מעולים וברמה מטורפת, אפילו על בסיס של תמונות סטילס (תמונות רגילות), שהועלו אליה ונוספה להם הנחייה שאומרת מה "עושים" האובייקטים שבתמונה כשהם "משתתפים בצילומים".
וזה בדיוק מה שמדאיג היום רבים בתעשיית הקולנוע. קשה להימלט מהמחשבה כמה ואילו מקצועות עומדים להיעלם בקרוב מהעולם, מהמסך, הגדול או הקטן. בצל הקדמה הזו עלולים כמה א.נשים לאבד את פרנסתם. החלפתם הצפויה בבינה מלאכותית תהיה כי היא זולה, יעילה, צייתנית וכזו שאף פעם לא חולה, לא עצובה ולא מאחרת, כי הילד שלה מרגיש לא טוב בבית...
אז לצד זה שהבינה המלאכותית מרגשת, תורמת ליצירתיות וגלומות בה אינספור אפשרויות בלתי נגמרות, היא טומנת בחובה גם איומים וסכנות לאנושות ולנו בני האדם. תעשיית הקולנוע כולה עלולה להיות מוחלפת בהדרגה במיליוני רובוטים שקוראים להם AI ואין להם אפילו גוף לחבוט בו. רק אינטליגנציה מלאכותית, שלא מרחמת ולא חומלת, כי היא עושה רק מה שאומרים לה. במקלדת, כן?
הפתרון, כי חייבים לדבר אופטימית שוטפת, הוא ללמוד את הכלים החדשים הללו. יידע כל מקצוען קולנוע שבמקום להיות מוחלף ב-AI, עדיף לדעת AI ולהשתלב בעולם החדש הזה.
הנה Google Veo 2 המוביל:
https://youtu.be/VNWLHAnRc0o
הכלי האינטגרטיבי שעושה תהליך שלם מפרומפט קטן:
https://youtu.be/Aw1TQwkCLQs
מודל וידאו בינתי ישראלי (עברית):
https://youtu.be/CkpLiPWLcHo
אפשרויות הווידאו AI שהולכות ומתפתחות במהירות - הנה Neurawik:
https://youtu.be/1HVkzZiv82Q
Sora רצה להחליף את עשיית הסרטים הרגילה (עברית)
https://youtu.be/kx3H1jFHncY
דברים שרק AI יכול לעשות (ללא מילים):
https://youtu.be/f-Vbm-iQ_Xw
הדרכה ל-Image to Video שהופכת תמונה לסרטון וידאו (עברית):
https://youtu.be/mR3rN8vphC8
קליפ AI של שיר של הביטלס:
https://youtu.be/Z9MZdNrGbM4
כך יוצרים מתמונות בעזרת פרומפט וידאו AI בקלות עם Minimax (עברית):
https://youtu.be/F-gl4E5yo60
כך יוצרים לייב פורטרייט - דיוקן עם מחוות שלכם:
https://youtu.be/kM3KSrPrh9c
קליפ מתמונה בשיטה של Image to video:
https://youtu.be/yCczY9PNeao
קדימון AI מדומה לסרט מד"ב שאולי יצולם:
https://youtu.be/oAIrJP4n5sQ
כך מחליפים פנים לדמויות וידאו ב-Faceswap:
https://youtu.be/vVs0DZ8VyGQ
מינימקס המטורף בווידאו AI:
https://youtu.be/4QXCV_TYKZc?long=yes
הנה Dream Machine של לומה:
https://youtu.be/N_hlfwWtgPQ?long=yes
על סקיצה של ג'ון לנון שהושלמה 40 שנה אחרי מותו עם קליפ משולב דמויות AI:
https://youtu.be/APJAQoSCwuA?long=yes
Magic Hour AI - כלי שיוצר סרטונים עד 60 שניות, שזה הכי הרבה:
https://youtu.be/eSpuvmRhcPg?long=yes
KREA - מודל ליצירת סרטונים AI:
https://youtu.be/OBewafac0Xs?long=yes
MINIMAX - עוד מודל וידאו מדהים מסין:
https://youtu.be/7JZLLxV1AGc?long=yes
כלי וידאו שמייצר ישר סרטון רב-סצנות:
https://youtu.be/BCCUNiToo94?long=yes
כלי הווידאו המומלצים לתחילת 2025:
https://youtu.be/K04zRJ8Vl_s?long=yes
וכך מייצרים סרטי וידאו ארוכים ב-Canva תחילת 2025:
https://youtu.be/tWmVbn4rUd0?long=yes
למה מחשבים לא חכמים או נבונים כמו בני אדם?
מחשבים יודעים לעשות המון דברים מצוין, אפילו יותר מבני אדם. אבל זה לא אומר שהם נבונים או חכמים מבני אדם. עדיין...
מהירות הפעולה של המחשבים מאפשרת להם לבצע חישובים מסובכים ביותר, בשבריר מהמהירות שאפילו הגאון האנושי הכי גדול יכול רק לקנא בה. הם יכולים לחשב מתמטיקה ולבצע פעולות על תמונות, וידאו, תקשורת ועוד, אפילו לנצח את רובנו בשחמט... מחשב כבר ניצח את האלופים האנושיים, אפילו בשעשועון טלוויזיה שהתנהל בשפה טבעית, שהיא שפה אנושית.
אבל האם זה אומר שהם נבונים או חכמים באמת? ואם לא, האם בעתיד יוכל המחשב להיות חכם כמו ואפילו יותר מבני אדם? ונבון?
כרגע מחשבים הם ממש לא נבונים כבני אנוש. הם מחשבים מצוין, אבל חושבים ברמה של ילד קטן. החשיבה האנושית היא מפותחת כל כך, שהם אפילו לא קרובים לחיקוי שלה.
בקשר לחוכמה, הם לומדים ועושים זאת לא רע, אפילו טוב. למידת מכונה, למשל, מחייבת עדיין בני אדם מקצועיים שיאמנו את המחשב וזו עדיין מלאכה למומחים. זה אומר שמדובר במשהו כמו מורים ברמת פרופסור המלמדים תלמידים בבית הספר היסודי.
אבל למידה עמוקה היא סיפור אחר. כבר היום מחשבים מלמדים את עצמם, באמצעות טיפול בכמויות אדירות של נתונים, מה שקרוי לעתים "ביג דאטה", לזהות ולהסיק מסקנות שמעט מאוד בני אדם יכולים היו להגיע אליהם. זו כבר סוג של תבונה ולא סתם זהו חלק מובחר בעולם של ה"בינה המלאכותית" של ימינו.
ישנם מדענים שמאמינים שבקרוב, ממש בתוך כמה עשרות שנים, יהיו כבר מחשבים נבונים ובעלי רגשות כמו של בני אדם. זה ייצור עולם חדש ומשונה שבו מחשבים יוכלו לבצע ולחשוב בשבילנו. יש אפילו מי שטוענים שזה יאריך את חיינו בהמון שנים. האם זה טוב או שיש בזה גם רע? - כנראה שגם וגם, אבל בכל מקרה זה מעניין וראוי למחשבה!
הנה סרטון על חוכמת המחשב לעומת חוכמת האדם (עברית):
http://youtu.be/YTNasDfDE6U
אולי המחשב כן יכול להיות חכם כמו בן אדם? (מתורגם):
https://youtu.be/3wLqsRLvV-c
מחשבים יודעים לעשות המון דברים מצוין, אפילו יותר מבני אדם. אבל זה לא אומר שהם נבונים או חכמים מבני אדם. עדיין...
מהירות הפעולה של המחשבים מאפשרת להם לבצע חישובים מסובכים ביותר, בשבריר מהמהירות שאפילו הגאון האנושי הכי גדול יכול רק לקנא בה. הם יכולים לחשב מתמטיקה ולבצע פעולות על תמונות, וידאו, תקשורת ועוד, אפילו לנצח את רובנו בשחמט... מחשב כבר ניצח את האלופים האנושיים, אפילו בשעשועון טלוויזיה שהתנהל בשפה טבעית, שהיא שפה אנושית.
אבל האם זה אומר שהם נבונים או חכמים באמת? ואם לא, האם בעתיד יוכל המחשב להיות חכם כמו ואפילו יותר מבני אדם? ונבון?
כרגע מחשבים הם ממש לא נבונים כבני אנוש. הם מחשבים מצוין, אבל חושבים ברמה של ילד קטן. החשיבה האנושית היא מפותחת כל כך, שהם אפילו לא קרובים לחיקוי שלה.
בקשר לחוכמה, הם לומדים ועושים זאת לא רע, אפילו טוב. למידת מכונה, למשל, מחייבת עדיין בני אדם מקצועיים שיאמנו את המחשב וזו עדיין מלאכה למומחים. זה אומר שמדובר במשהו כמו מורים ברמת פרופסור המלמדים תלמידים בבית הספר היסודי.
אבל למידה עמוקה היא סיפור אחר. כבר היום מחשבים מלמדים את עצמם, באמצעות טיפול בכמויות אדירות של נתונים, מה שקרוי לעתים "ביג דאטה", לזהות ולהסיק מסקנות שמעט מאוד בני אדם יכולים היו להגיע אליהם. זו כבר סוג של תבונה ולא סתם זהו חלק מובחר בעולם של ה"בינה המלאכותית" של ימינו.
ישנם מדענים שמאמינים שבקרוב, ממש בתוך כמה עשרות שנים, יהיו כבר מחשבים נבונים ובעלי רגשות כמו של בני אדם. זה ייצור עולם חדש ומשונה שבו מחשבים יוכלו לבצע ולחשוב בשבילנו. יש אפילו מי שטוענים שזה יאריך את חיינו בהמון שנים. האם זה טוב או שיש בזה גם רע? - כנראה שגם וגם, אבל בכל מקרה זה מעניין וראוי למחשבה!
הנה סרטון על חוכמת המחשב לעומת חוכמת האדם (עברית):
http://youtu.be/YTNasDfDE6U
אולי המחשב כן יכול להיות חכם כמו בן אדם? (מתורגם):
https://youtu.be/3wLqsRLvV-c
מהי ראייה ממוחשבת במערכות זיהוי תמונה?
ראייה ממוחשבת (Computer Vision) היא יכולת של מערכת מבוססת מחשב לעבד תמונות או וידאו. במערכות ראייה ממוחשבת עושים שימוש במגוון תחומים, מזיהוי פנים, זיהוי מבנים, מיפוי, מדידה, שיפוץ תמונות, לרוב לצרכים אסתטיים ועוד.
מערכות ראייה ממוחשבת מבוססות על יכולת זיהוי תמונה. במערכות כאלה יכולה המערכת לזהות מרכיבים בתמונה, על סמך מידע שהוזן לתוכה ולמידת מכונה, שבה היא השתכללה עם הזמן.
מכשירים סלולאריים ורובוטים נעזרים בראייה ממוחשבת כדי לראות ולהבין, ממש כמו בני אדם, את סביבתם. הם מצוידים ביכולת לנתח את המרכיבים החזותיים שנקלטו במערכת הראייה מבוססת החיישנים שלהם ולשפר את היכולות שלהם, בהתבססות על מה שלמדו בפעמים קודמות. זו כמובן "למידת מכונה".
מערכות ראייה ממוחשבת משמשות כיום גם לזיהוי פרצופים של חשודים בביצוע עבירות, מחבלים וחברים בארגוני טרור וכדומה.
זוהי טכנולוגיית הראייה הממוחשבת:
https://youtu.be/zLkz6ljKtyw
כך ניתן להשתמש בראייה ממוחשבת לשימושים שונים:
https://youtu.be/ObIjxA9vCR8?t=15s
מכשיר הקינקט הכיל שבב זיהוי תנועה עם ראייה ממוחשבת ועשה פלאים:
https://youtu.be/jGJh63sV66A
והרצאה שלמה על ראייה ממוחשבת (עברית):
https://youtu.be/hG5tRy3FEWI?t=1m14s?long=yes
ראייה ממוחשבת (Computer Vision) היא יכולת של מערכת מבוססת מחשב לעבד תמונות או וידאו. במערכות ראייה ממוחשבת עושים שימוש במגוון תחומים, מזיהוי פנים, זיהוי מבנים, מיפוי, מדידה, שיפוץ תמונות, לרוב לצרכים אסתטיים ועוד.
מערכות ראייה ממוחשבת מבוססות על יכולת זיהוי תמונה. במערכות כאלה יכולה המערכת לזהות מרכיבים בתמונה, על סמך מידע שהוזן לתוכה ולמידת מכונה, שבה היא השתכללה עם הזמן.
מכשירים סלולאריים ורובוטים נעזרים בראייה ממוחשבת כדי לראות ולהבין, ממש כמו בני אדם, את סביבתם. הם מצוידים ביכולת לנתח את המרכיבים החזותיים שנקלטו במערכת הראייה מבוססת החיישנים שלהם ולשפר את היכולות שלהם, בהתבססות על מה שלמדו בפעמים קודמות. זו כמובן "למידת מכונה".
מערכות ראייה ממוחשבת משמשות כיום גם לזיהוי פרצופים של חשודים בביצוע עבירות, מחבלים וחברים בארגוני טרור וכדומה.
זוהי טכנולוגיית הראייה הממוחשבת:
https://youtu.be/zLkz6ljKtyw
כך ניתן להשתמש בראייה ממוחשבת לשימושים שונים:
https://youtu.be/ObIjxA9vCR8?t=15s
מכשיר הקינקט הכיל שבב זיהוי תנועה עם ראייה ממוחשבת ועשה פלאים:
https://youtu.be/jGJh63sV66A
והרצאה שלמה על ראייה ממוחשבת (עברית):
https://youtu.be/hG5tRy3FEWI?t=1m14s?long=yes
איך הפכה שפת התכנות פייתון ללוהטת?
מבין שפות התכנות הרבות נחשבת שפת התכנות פייתון (Python) לאחת משפות הפיתוח הפופולריות ביותר בעולם. זוהי שפה אינטואיטיבית, מובנת ובעלת תחביר קליט ופשוט למדי.
המקור לשם השפה איננו מנחש החנק הענקי, הפיתון. ההשראה היא דווקא סדרת המערכונים הבריטית “מונטי-פייתון”, שהמתכנת ההולנדי שפיתח את שפת התכנות כל כך העריץ.
כשפת תכנות פייתון פופולרית ומועדפת על ידי מתכנתים, מסטארט-אפים וחברות קטנות ועד מי שמפתחים בחברות ענק, כולל גוגל ואינסטגרם.
בשפת פייתון משתמשים כיום מרבית החוקרים והמפתחים בתחומי הבינה המלאכותית, לצד מדעני נתונים ומנתחי מידע, במיוחד עם צמיחת טכנולוגיות כמו למידת מכונה (Machine learning) ולמידה עמוקה (Deep learning) בעשור האחרון.
סוגי פרויקטים שנוטים לפתח בפייתון הם בתחומי תוכנה וקוד מגוונים. ביניהם בולטים יישומי WEB, כלי בינה מלאכותית, פרויקטים של אוטומציה, עיבוד נתונים, מדע נתונים (Data science), אנליזה או ניתוח נתונים (Data analysis), רשתות, אינטרנט, כלים לעיבוד תמונה ועוד.
למעשה, בשנת 2024 פייתון היא כל כך פופולרית, שלראשונה עברה את ג'אווה סקריפט (JavaScript) בתור שפת התכנות הפופולרית ביותר בעולם. בדו"ח שפרסם אתר הקוד העיקרי "גיטהאב" הוא הודיע לראשונה שפייתון עקפה את JavaScript והפכה לשפת התכנות הפופולרית ביותר בעולם.
הסיבה לצמיחה ולשינוי הזה לטובת פייתון היא הזינוק המטורף בשימוש ב-GenAI, בינה יצירתית או גנרטיבית (Generative AI). הפיתוח הגובר של כלי GenAI, על פי גיטהאב, והזינוק בפיתוחים מבוססי דאטה סיינס ודאטה אנליטיקס, הביאו לנסיקה בשימוש בפייתון, הידועה כשפה העיקרית בה משתמשים לפיתוחים אלו.
#יתרונות פייתון
כבר שנים רבות שמהנדסי תוכנה ומתכנתים ותיקים ממליצים על פייתון או ג'אווה סקריפט, בתור שפות התכנות שהכי כדאי להם להתחיל בהן. מי שמשקיעים שעתיים ביום יכולים כבר אחרי 3 חודשים לכתוב תוכנה של ממש.
לאחר מכן כדאי להתמחות באחד התחומים שהיא מאפשרת וטובה בהם, כמו פיתוח יישום ווב (web application), תוכנה רגילה למחשב (Desktop program), למידת מכונה (Machine learning) או בינה מלאכותית (Artificial intelligence).
הנה סקירה קצרה על שפת פייתון (עברית):
https://youtu.be/cKZ0miaDtkw
עוד קצת היכרות עם שפת פייתון (עברית):
https://youtu.be/A7XXmxU3o4o
תמצית בדקה של מה שלומדים בפייתון בשנה:
https://youtu.be/AfR-lJghs4w
היכרות באנגלית:
https://youtu.be/poJfwre2PIs
קורס באורך מלא של תכנות בשפת פייתון:
https://youtu.be/_uQrJ0TkZlc?long=yes
מבין שפות התכנות הרבות נחשבת שפת התכנות פייתון (Python) לאחת משפות הפיתוח הפופולריות ביותר בעולם. זוהי שפה אינטואיטיבית, מובנת ובעלת תחביר קליט ופשוט למדי.
המקור לשם השפה איננו מנחש החנק הענקי, הפיתון. ההשראה היא דווקא סדרת המערכונים הבריטית “מונטי-פייתון”, שהמתכנת ההולנדי שפיתח את שפת התכנות כל כך העריץ.
כשפת תכנות פייתון פופולרית ומועדפת על ידי מתכנתים, מסטארט-אפים וחברות קטנות ועד מי שמפתחים בחברות ענק, כולל גוגל ואינסטגרם.
בשפת פייתון משתמשים כיום מרבית החוקרים והמפתחים בתחומי הבינה המלאכותית, לצד מדעני נתונים ומנתחי מידע, במיוחד עם צמיחת טכנולוגיות כמו למידת מכונה (Machine learning) ולמידה עמוקה (Deep learning) בעשור האחרון.
סוגי פרויקטים שנוטים לפתח בפייתון הם בתחומי תוכנה וקוד מגוונים. ביניהם בולטים יישומי WEB, כלי בינה מלאכותית, פרויקטים של אוטומציה, עיבוד נתונים, מדע נתונים (Data science), אנליזה או ניתוח נתונים (Data analysis), רשתות, אינטרנט, כלים לעיבוד תמונה ועוד.
למעשה, בשנת 2024 פייתון היא כל כך פופולרית, שלראשונה עברה את ג'אווה סקריפט (JavaScript) בתור שפת התכנות הפופולרית ביותר בעולם. בדו"ח שפרסם אתר הקוד העיקרי "גיטהאב" הוא הודיע לראשונה שפייתון עקפה את JavaScript והפכה לשפת התכנות הפופולרית ביותר בעולם.
הסיבה לצמיחה ולשינוי הזה לטובת פייתון היא הזינוק המטורף בשימוש ב-GenAI, בינה יצירתית או גנרטיבית (Generative AI). הפיתוח הגובר של כלי GenAI, על פי גיטהאב, והזינוק בפיתוחים מבוססי דאטה סיינס ודאטה אנליטיקס, הביאו לנסיקה בשימוש בפייתון, הידועה כשפה העיקרית בה משתמשים לפיתוחים אלו.
#יתרונות פייתון
כבר שנים רבות שמהנדסי תוכנה ומתכנתים ותיקים ממליצים על פייתון או ג'אווה סקריפט, בתור שפות התכנות שהכי כדאי להם להתחיל בהן. מי שמשקיעים שעתיים ביום יכולים כבר אחרי 3 חודשים לכתוב תוכנה של ממש.
לאחר מכן כדאי להתמחות באחד התחומים שהיא מאפשרת וטובה בהם, כמו פיתוח יישום ווב (web application), תוכנה רגילה למחשב (Desktop program), למידת מכונה (Machine learning) או בינה מלאכותית (Artificial intelligence).
הנה סקירה קצרה על שפת פייתון (עברית):
https://youtu.be/cKZ0miaDtkw
עוד קצת היכרות עם שפת פייתון (עברית):
https://youtu.be/A7XXmxU3o4o
תמצית בדקה של מה שלומדים בפייתון בשנה:
https://youtu.be/AfR-lJghs4w
היכרות באנגלית:
https://youtu.be/poJfwre2PIs
קורס באורך מלא של תכנות בשפת פייתון:
https://youtu.be/_uQrJ0TkZlc?long=yes
מהי המוסיקה שיוצר ה-AI?
המוסיקה של הבינה מלאכותית הג'נרטיבית היא אחד הפלאים האחרונים והמדהימים של הז'אנר הנפלא הזה.
בינה מלאכותית גנרטיבית (Generative AI) היא בינה מלאכותית שיכולה לייצר עבור המשתמש מגוון של תוכן חדש, החל מטקסטים, דרך תמונות, סרטונים, מוסיקה ומגוון סוגי מדיה נוספים.
הבינה המלאכותית המוזיקלית יודעת לעשות 3 דברים:
1. לקבל דאטה מוסיקלי, כלומר נתונים, בכמויות ענק, מכל סגנון של מוסיקה, מכל תקופה או אזור ותרבות בעולם ועם כל קול וכלי מוסיקלי אפשרי.
2. ללמוד מהדאטה הזה איך הדברים נשמעים.
3. לייצר מוסיקה חדשה, לפי דרישות המשתמש כפי שנוסחו בהוראה מילולית פשוטה (פרומפט).
פלטפורמות וכלי בינה פופולריים כמו Suno ו-Udio מאפשרים היום יצירת מוסיקה קלה וחדשנית. יצירה כזו של מוסיקה לא מחייבת את המשתמשים בידע מוסיקלי אלא רק ביכולות ניסוח פרומפטים וטעם טוב, שיאפשר ליצור מוסיקה טובה באמצעות בינה מלאכותית.
את הידע המוסיקלי שנדרש מאז ומעולם, בכדי להלחין ולכתוב שירים ומוסיקה כלית, מחליפים כאן אלגוריתמים מתקדמים ויכולת של המודלים הבינתיים להבין את הפרומפטים, אותם תיאורים טקסטואליים שהמשתמשים כותבים ולהפוך אותם ליצירות מוסיקליות, שכוללות מלודיה (מנגינה), עיבוד והפקה שנשמעת לא פעם מקצועית והולכת ומשתפרת בכל גרסה חדשה.
היכולת המדהימה הזו, שמאפשרת לאנשים ללא רקע מוסיקלי ליצור מוסיקה ושירים שלמים בקלות יחסית, מאפשרת פתיחה של עולם יצירת המוסיקה לציבורים חדשים ופותחת הזדמנויות חדשות לביטוי יצירתי ואמנותי.
פרויקט נחמד ביוטיוב, למשל, נקרא AI Beatles ומייצר שירים שהביטלס מעולם לא שרו. הם מהמילים והמוסיקה ועד לקולות וצורת השירה, הם נשמעים מאוד כמו הדבר האמיתי אבל הם לגמרי בינה מלאכותית. את הקליפים יוצרים שם מחומרים אמיתיים, אבל סביר להניח שעם התפתחות המודלים המדהימים של הווידאו הגנרטיבי גם הם יזכו לשדרוג בינתי ובהמשך יהיו לגמרי AI.
עוד מודל Gen AI מעניין הוא Diff-A-Riff, שיוצר ליווי כלי לריף מוסיקלי שהעלית. הוא משתמש במקודד אוטומטי (CAE) ומודל דיפוזיה סמוי (LDM) כדי ליצור ערוצי מוסיקה, תפקידי כלים נוספים שמתאימים ללוות את הריף המקורי. עם Diff-A-Riff, ניתן לתת רפרנס, מעין השראה או רוח מוסיקלית, או פרומפט - הנחייה מילולית שתנחה את המודל בהפקת הערוצים הנוספים הללו. בכך פותח המודל, כלומר הכלי, אפשרויות חדשות ומרגשות, הן למוסיקאים המחפשים השראה וכן לחובבים או מתעניינים שרוצים לשלב בינה גנרטיבית וכלי AI במוסיקה.
הנה המודל של Suno שמייצר מוסיקת AI בהזמנה:
https://youtu.be/3_pxKK2wqvI
הבינה המוסיקלית המדהימה של Udio:
https://youtu.be/aQC0FI_asKY
המחשה מוקדמת של שיטת הוספת הכלים והתפקידים במודל Diff-A-Riff:
https://youtu.be/dAq0YcOAB4k
ההבטחה של Fugatto של אנבידיה:
https://youtu.be/qj1Sp8He6e4
הדוגמאות של המודל הבא מ-Eleven labs:
https://youtu.be/WA4Aco4rnTA
טעם רע או אזהרה - הקליפ של Apple שמדגים את החשש של המוסיקאים דווקא מ-Ai:
https://youtu.be/ntjkwIXWtrc
תמיד יהיה מנוע וידאו שיאפשר להפוך את זה לקליפ:
https://youtu.be/Xfhulh3iyWQ
מוסיקה קלאסית לכינור וכלי מיתר שיצרה בינה:
https://youtu.be/iQ6ITnYAIok
Ai Beatles - הפרויקט שמייצר שירים שהביטלס מעולם לא שרו:
https://youtu.be/FSbXnOKBK40
Riffusion - הכלי החדש ליצירת מוסיקת AI (עברית):
https://youtu.be/c5_agjg-_Q4?long=yes
ההבטחה המפוקפקת אך אפשרית לעשות כסף ממוסיקת הבינה:
https://youtu.be/cvRJ_izhs28?long=yes
ואיך עובדים עם סונו 4:
https://youtu.be/5zYHm35V998?long=yes
המוסיקה של הבינה מלאכותית הג'נרטיבית היא אחד הפלאים האחרונים והמדהימים של הז'אנר הנפלא הזה.
בינה מלאכותית גנרטיבית (Generative AI) היא בינה מלאכותית שיכולה לייצר עבור המשתמש מגוון של תוכן חדש, החל מטקסטים, דרך תמונות, סרטונים, מוסיקה ומגוון סוגי מדיה נוספים.
הבינה המלאכותית המוזיקלית יודעת לעשות 3 דברים:
1. לקבל דאטה מוסיקלי, כלומר נתונים, בכמויות ענק, מכל סגנון של מוסיקה, מכל תקופה או אזור ותרבות בעולם ועם כל קול וכלי מוסיקלי אפשרי.
2. ללמוד מהדאטה הזה איך הדברים נשמעים.
3. לייצר מוסיקה חדשה, לפי דרישות המשתמש כפי שנוסחו בהוראה מילולית פשוטה (פרומפט).
פלטפורמות וכלי בינה פופולריים כמו Suno ו-Udio מאפשרים היום יצירת מוסיקה קלה וחדשנית. יצירה כזו של מוסיקה לא מחייבת את המשתמשים בידע מוסיקלי אלא רק ביכולות ניסוח פרומפטים וטעם טוב, שיאפשר ליצור מוסיקה טובה באמצעות בינה מלאכותית.
את הידע המוסיקלי שנדרש מאז ומעולם, בכדי להלחין ולכתוב שירים ומוסיקה כלית, מחליפים כאן אלגוריתמים מתקדמים ויכולת של המודלים הבינתיים להבין את הפרומפטים, אותם תיאורים טקסטואליים שהמשתמשים כותבים ולהפוך אותם ליצירות מוסיקליות, שכוללות מלודיה (מנגינה), עיבוד והפקה שנשמעת לא פעם מקצועית והולכת ומשתפרת בכל גרסה חדשה.
היכולת המדהימה הזו, שמאפשרת לאנשים ללא רקע מוסיקלי ליצור מוסיקה ושירים שלמים בקלות יחסית, מאפשרת פתיחה של עולם יצירת המוסיקה לציבורים חדשים ופותחת הזדמנויות חדשות לביטוי יצירתי ואמנותי.
פרויקט נחמד ביוטיוב, למשל, נקרא AI Beatles ומייצר שירים שהביטלס מעולם לא שרו. הם מהמילים והמוסיקה ועד לקולות וצורת השירה, הם נשמעים מאוד כמו הדבר האמיתי אבל הם לגמרי בינה מלאכותית. את הקליפים יוצרים שם מחומרים אמיתיים, אבל סביר להניח שעם התפתחות המודלים המדהימים של הווידאו הגנרטיבי גם הם יזכו לשדרוג בינתי ובהמשך יהיו לגמרי AI.
עוד מודל Gen AI מעניין הוא Diff-A-Riff, שיוצר ליווי כלי לריף מוסיקלי שהעלית. הוא משתמש במקודד אוטומטי (CAE) ומודל דיפוזיה סמוי (LDM) כדי ליצור ערוצי מוסיקה, תפקידי כלים נוספים שמתאימים ללוות את הריף המקורי. עם Diff-A-Riff, ניתן לתת רפרנס, מעין השראה או רוח מוסיקלית, או פרומפט - הנחייה מילולית שתנחה את המודל בהפקת הערוצים הנוספים הללו. בכך פותח המודל, כלומר הכלי, אפשרויות חדשות ומרגשות, הן למוסיקאים המחפשים השראה וכן לחובבים או מתעניינים שרוצים לשלב בינה גנרטיבית וכלי AI במוסיקה.
הנה המודל של Suno שמייצר מוסיקת AI בהזמנה:
https://youtu.be/3_pxKK2wqvI
הבינה המוסיקלית המדהימה של Udio:
https://youtu.be/aQC0FI_asKY
המחשה מוקדמת של שיטת הוספת הכלים והתפקידים במודל Diff-A-Riff:
https://youtu.be/dAq0YcOAB4k
ההבטחה של Fugatto של אנבידיה:
https://youtu.be/qj1Sp8He6e4
הדוגמאות של המודל הבא מ-Eleven labs:
https://youtu.be/WA4Aco4rnTA
טעם רע או אזהרה - הקליפ של Apple שמדגים את החשש של המוסיקאים דווקא מ-Ai:
https://youtu.be/ntjkwIXWtrc
תמיד יהיה מנוע וידאו שיאפשר להפוך את זה לקליפ:
https://youtu.be/Xfhulh3iyWQ
מוסיקה קלאסית לכינור וכלי מיתר שיצרה בינה:
https://youtu.be/iQ6ITnYAIok
Ai Beatles - הפרויקט שמייצר שירים שהביטלס מעולם לא שרו:
https://youtu.be/FSbXnOKBK40
Riffusion - הכלי החדש ליצירת מוסיקת AI (עברית):
https://youtu.be/c5_agjg-_Q4?long=yes
ההבטחה המפוקפקת אך אפשרית לעשות כסף ממוסיקת הבינה:
https://youtu.be/cvRJ_izhs28?long=yes
ואיך עובדים עם סונו 4:
https://youtu.be/5zYHm35V998?long=yes
מי הרג את הרובוט המשרת פפר?
הרובוט המשרת פפר (Pepper) שפותח ביפן יצא ב-2015 למכירה בטוקיו. בתקשורת סיפרו אז שבתוך דקה אחת בודדת הוא אזל מן המלאי.
בגובה של 1.20 מטר, ו-30 קילו הוא הגיע מראש, כשהוא "טעון", אבל לא ברגשות אלא ב-200 אפליקציות שהותקנו עליו מראש..פפר ניחן בבינה מלאכותית ואנשי היצרנית, חברת סופטבנק, הסבירו שביצועיו יילכו וישתבחו, ככל שהוא יעבוד ויכיר את הצרכים של בעליו.
עם משימות אפשריות שהוא יכול למלא, כמו טיפול בקשישים, עוזר אישי בבית, חבר לילדים ובייביסיטר, בתחום המסחרי גם כפקיד קבלה במוסדות ממשלתיים ובבתי עסק מגוונים ואפילו כמוכר בחנויות, העתיד נראה ורוד לרובוט הזה וליצרנית שלו, תאגיד הענק היפני סופטבנק.
אמרו עליו שהוא מבין כמה שפות, יכול לתקשר ולהתממשק עם שלל מכשירים חכמים, לזהות באמצעות טכנולוגיית זיהוי פנים את הרגשות והבעות הפנים של האדם שמולו, להבין את רוב השיחות שמתבצעות איתו, להיות מורה וחבר של הילדים, להכיר וללמוד במהלך השנים את בני המשפחה ולהפוך חלק ממנה.
סיפרו גם שהוא מסוגל לא רק לטפל בקשישים אלא גם להיות להם לחבר של ממש, לספק להם את הצרכים החברתיים, להקל על בדידותם ועוד כהנה וכהנה.
אז הוא נראה כהבטחה גדולה לעולם הביתי והעסקי גם יחד, אבל 6 שנים מאוחר יותר, הכריזה סופטבנק על הפסקת ייצור הרובוט. המיזם, מסתבר, גבה מהתאגיד העשיר מחיר כבד ובאופן מסוים בלתי נסבל.
אז מה הוביל לכך שרובוט כה חמוד מבחינת המראה וכה חכם ועשיר מבחינה טכנולוגית, הפך כה מהר למעמסה שכזו על היצרנית העשירה, עד שהחליטה לזרוק אותו מהסיפון?
בתחום הביתי הוא היה אולי בסדר, אבל העולם העסקי, כמה לא מפתיע, הוא הרבה יותר קשה. מרגע שחברות ועסקים, כמו בתי מלון, מסעדות ואפילו שדות תעופה הצטיידו בו, הם גילו שהרובוט, שעולה $2000 ואז עוד $350 בכל חודש לכל יחידה, הפך במהירות לא רק לנטל כלכלי, אלא גם למטרד, נדנוד חסר יכולת ובעיני רבים אפילו למשהו “קריפי”, מלחיץ.
זה הוביל לכך שרבים מהעסקים שרכשו והעסיקו את הרובוט הטרנדי ופרסמו זאת בגאווה החלו לפטר אותו, כלומר לנתקו מהחשמל ומהשירות והודעות לעיתונות על כך.
נראה שלא צריך היה להדגיש את גודל הנזק למחלקת השיווק של סופטבנק. הוא היה אדיר.
כך יצא שסופטבנק לא הרגה רק את פפר אלא סגרה לחלוטין את כל מחלקת הרובוטיקה, המפוארת לשעבר שלה.
הנה פפר, הרובוט המשרת:
https://youtu.be/aZ5VkgvQFBU
כך הוא נע:
https://youtu.be/osD6O4LAcpo
והרובוט פפר מקבל פני חולים בבית החולים:
https://youtu.be/rQAjNgOtwZM
הרובוט המשרת פפר (Pepper) שפותח ביפן יצא ב-2015 למכירה בטוקיו. בתקשורת סיפרו אז שבתוך דקה אחת בודדת הוא אזל מן המלאי.
בגובה של 1.20 מטר, ו-30 קילו הוא הגיע מראש, כשהוא "טעון", אבל לא ברגשות אלא ב-200 אפליקציות שהותקנו עליו מראש..פפר ניחן בבינה מלאכותית ואנשי היצרנית, חברת סופטבנק, הסבירו שביצועיו יילכו וישתבחו, ככל שהוא יעבוד ויכיר את הצרכים של בעליו.
עם משימות אפשריות שהוא יכול למלא, כמו טיפול בקשישים, עוזר אישי בבית, חבר לילדים ובייביסיטר, בתחום המסחרי גם כפקיד קבלה במוסדות ממשלתיים ובבתי עסק מגוונים ואפילו כמוכר בחנויות, העתיד נראה ורוד לרובוט הזה וליצרנית שלו, תאגיד הענק היפני סופטבנק.
אמרו עליו שהוא מבין כמה שפות, יכול לתקשר ולהתממשק עם שלל מכשירים חכמים, לזהות באמצעות טכנולוגיית זיהוי פנים את הרגשות והבעות הפנים של האדם שמולו, להבין את רוב השיחות שמתבצעות איתו, להיות מורה וחבר של הילדים, להכיר וללמוד במהלך השנים את בני המשפחה ולהפוך חלק ממנה.
סיפרו גם שהוא מסוגל לא רק לטפל בקשישים אלא גם להיות להם לחבר של ממש, לספק להם את הצרכים החברתיים, להקל על בדידותם ועוד כהנה וכהנה.
אז הוא נראה כהבטחה גדולה לעולם הביתי והעסקי גם יחד, אבל 6 שנים מאוחר יותר, הכריזה סופטבנק על הפסקת ייצור הרובוט. המיזם, מסתבר, גבה מהתאגיד העשיר מחיר כבד ובאופן מסוים בלתי נסבל.
אז מה הוביל לכך שרובוט כה חמוד מבחינת המראה וכה חכם ועשיר מבחינה טכנולוגית, הפך כה מהר למעמסה שכזו על היצרנית העשירה, עד שהחליטה לזרוק אותו מהסיפון?
בתחום הביתי הוא היה אולי בסדר, אבל העולם העסקי, כמה לא מפתיע, הוא הרבה יותר קשה. מרגע שחברות ועסקים, כמו בתי מלון, מסעדות ואפילו שדות תעופה הצטיידו בו, הם גילו שהרובוט, שעולה $2000 ואז עוד $350 בכל חודש לכל יחידה, הפך במהירות לא רק לנטל כלכלי, אלא גם למטרד, נדנוד חסר יכולת ובעיני רבים אפילו למשהו “קריפי”, מלחיץ.
זה הוביל לכך שרבים מהעסקים שרכשו והעסיקו את הרובוט הטרנדי ופרסמו זאת בגאווה החלו לפטר אותו, כלומר לנתקו מהחשמל ומהשירות והודעות לעיתונות על כך.
נראה שלא צריך היה להדגיש את גודל הנזק למחלקת השיווק של סופטבנק. הוא היה אדיר.
כך יצא שסופטבנק לא הרגה רק את פפר אלא סגרה לחלוטין את כל מחלקת הרובוטיקה, המפוארת לשעבר שלה.
הנה פפר, הרובוט המשרת:
https://youtu.be/aZ5VkgvQFBU
כך הוא נע:
https://youtu.be/osD6O4LAcpo
והרובוט פפר מקבל פני חולים בבית החולים:
https://youtu.be/rQAjNgOtwZM
מי טען שעיבוד נתונים הוא רק גימיק אופנתי?
"דיברתי עם מיטב החוקרים ואני יכול להבטיח לכם שעיבוד נתונים זה סתם גימיק אופנתי שלא יחזיק מעמד שנה!"
כשעורך ספרי העסקים בהוצאת הספרים הנחשבת Francis Hall אמר את המשפט שלמעלה בשנת 1957 וזלזל בעיבוד הנתונים הממוחשב, הוא עשה את אחת הטעויות הגדולות בתולדות העולם העסקי.
פחות מ-20 שנה לאחר מכן כל העסקים הגדולים בכל העולם הפכו לגופים ממוחשבים ו-10 שנים נוספות אחרי כן גם עסקים קטנים אימצו בהמוניהם את בסיסי הנתונים והחישובים שבצעו המחשבים.
כיום ישנם מחשבי על שיודעים לעשות דברים בלתי נתפסים והעתיד עוד לפניהם. בינה מלאכותית, ביג דאטה, למידת מכונה ולמידה עמוקה - אלה רק חלק מהדברים המדהימים שעושים היום מחשבים, שהיו אמורים לפי ה"נבואה" ההיא להיות גימיק ותו לא...
הנה ווטסון של יבמ, מחשב העל הראשון שהביס מתחרים אנושיים בחידון הטלוויזיה ג'יופרדי והראה את העתיד של הבינה המלאכותית:
https://youtu.be/P18EdAKuC1U
הרצאה של האדם שהובס בידי ווטסון (מתורגם):
https://youtu.be/b2M-SeKey4o?long=yes
והרצאה על ווטסון והג'יאופרדי בטלוויזיה (עברית):
https://youtu.be/XGLmbXDEEdw?t=79s?long=yes
"דיברתי עם מיטב החוקרים ואני יכול להבטיח לכם שעיבוד נתונים זה סתם גימיק אופנתי שלא יחזיק מעמד שנה!"
כשעורך ספרי העסקים בהוצאת הספרים הנחשבת Francis Hall אמר את המשפט שלמעלה בשנת 1957 וזלזל בעיבוד הנתונים הממוחשב, הוא עשה את אחת הטעויות הגדולות בתולדות העולם העסקי.
פחות מ-20 שנה לאחר מכן כל העסקים הגדולים בכל העולם הפכו לגופים ממוחשבים ו-10 שנים נוספות אחרי כן גם עסקים קטנים אימצו בהמוניהם את בסיסי הנתונים והחישובים שבצעו המחשבים.
כיום ישנם מחשבי על שיודעים לעשות דברים בלתי נתפסים והעתיד עוד לפניהם. בינה מלאכותית, ביג דאטה, למידת מכונה ולמידה עמוקה - אלה רק חלק מהדברים המדהימים שעושים היום מחשבים, שהיו אמורים לפי ה"נבואה" ההיא להיות גימיק ותו לא...
הנה ווטסון של יבמ, מחשב העל הראשון שהביס מתחרים אנושיים בחידון הטלוויזיה ג'יופרדי והראה את העתיד של הבינה המלאכותית:
https://youtu.be/P18EdAKuC1U
הרצאה של האדם שהובס בידי ווטסון (מתורגם):
https://youtu.be/b2M-SeKey4o?long=yes
והרצאה על ווטסון והג'יאופרדי בטלוויזיה (עברית):
https://youtu.be/XGLmbXDEEdw?t=79s?long=yes
איך פועלות תוכנות תרגום?
בספר "מדריך הטרמפיסט לגלקסיה" של דאגלס אדמס מוזכר "דג בבל". בספר תוקעים את הדג הזה באוזן וכך מבינים בלי הגבלה שפות שונות מכל שפות העולם. חברת יאהו קראה לשירות שלה על שמו Babel Fish והוא מתרגם טקסטים לבקשת הגולשים. כמו כל המתחרים, גם התוצאות של השירות המקוון הזה צנועות מעט יותר..
תרגום מכונה (Machine Translation) הוא פעולת תרגום משפה אחת לשפה אחרת שמבצעת תוכנת מחשב לבדה. בניגוד לתוכנת מילון, המתרגמת מילים בודדות, תרגום מכונה מתרגם טקסטים שלמים. תרגום מכונה כזה נקרא בשמות נוספים כמו "תרגום ממוחשב", "תרגום אוטומטי", או "תרגום באמצעות מחשב".
אחת הדוגמאות של שימוש בתרגום מכונה היא תוכנת התרגום של גוגל (Google Translate). תוכנה מקוונת זו היא כבר מזמן אגדה. לא שהיא הראשונה מסוגה והיא אפילו לא המהירה ביותר, אבל היא מתרגמת יותר שפות מכל תוכנה אחרת ועושה זאת לעיתים קרובות בצורה סבירה. אף על פי כן, היא מתרגמת בשגיאות רבות אל ומשפות שאינן שפות אירופיות. על אף שמבחינה טכנולוגית היא מהווה הישג של ממש, הרשת מלאה במקומות שבהם מוצגים התרגומים העילגים שלה באופן הומוריסטי ובלעג.
בניגוד לתוכנות התרגום אשר מבוססות על מסדי נתונים, נמנית גוגל טרנסלייט על התוכנות שמתבססות על לימוד וטעייה. תוכנה כזו לומדת ומתפתחת כל הזמן, על ידי כך שהיא נעזרת במשתמשים המתבקשים, במידה והם מוצאים שגיאות בתרגום, להזין לתוכנה את התיקונים שהם מציעים. כך התוכנה "לומדת" והולכת ומשפרת את כלי התרגום שלה ואת יכולת התרגום העתידי שתעשה.
יש חוקרים שסבורים שתרגום מכונה ללא סיוע אנושי יהיה אפשרי בעתיד והאדם יזכה בעתיד לתרגום מכונה מלא. אחרים סבורים שגם אם יחלפו עוד שנים רבות עד שהמחקר בתחום הזה יבשיל, לעולם לא יתקבל תרגום מכונה שהוא מושלם.
במדעי המחשב נקרא הענף שעוסק בין השאר בתרגום מכונה "עיבוד שפה טבעית", או בלועזית "Natural Language Processing", בקיצור NLP.
הנה תרגום סימולטני, בזמן אמת, של שיחות בתוכנת סקייפ:
https://youtu.be/LKB3FdgjexU
כך מתרגמות תוכנות תרגום בזמן אמת, על המקום:
https://youtu.be/X4BmV2t83SM
כך פועלת תוכנת תרגום של גוגל:
https://youtu.be/_GdSC1Z1Kzs
כך משתמש שחקן כדורגל כדי לתקשר עם המאמן שלו בעזרת תוכנת תרגום סלולארית:
https://youtu.be/oaVQxtzSkp4
לפעמים התרגום של המכונה נשמע מוזר, כמו כאן (מתורגם):
https://youtu.be/Qro3ObmS_0g
וסרטון תיעודי קצר על ההתפתחות של גוגל טרנסלייט:
https://youtu.be/OPTKlycwIkM?long=yes
בספר "מדריך הטרמפיסט לגלקסיה" של דאגלס אדמס מוזכר "דג בבל". בספר תוקעים את הדג הזה באוזן וכך מבינים בלי הגבלה שפות שונות מכל שפות העולם. חברת יאהו קראה לשירות שלה על שמו Babel Fish והוא מתרגם טקסטים לבקשת הגולשים. כמו כל המתחרים, גם התוצאות של השירות המקוון הזה צנועות מעט יותר..
תרגום מכונה (Machine Translation) הוא פעולת תרגום משפה אחת לשפה אחרת שמבצעת תוכנת מחשב לבדה. בניגוד לתוכנת מילון, המתרגמת מילים בודדות, תרגום מכונה מתרגם טקסטים שלמים. תרגום מכונה כזה נקרא בשמות נוספים כמו "תרגום ממוחשב", "תרגום אוטומטי", או "תרגום באמצעות מחשב".
אחת הדוגמאות של שימוש בתרגום מכונה היא תוכנת התרגום של גוגל (Google Translate). תוכנה מקוונת זו היא כבר מזמן אגדה. לא שהיא הראשונה מסוגה והיא אפילו לא המהירה ביותר, אבל היא מתרגמת יותר שפות מכל תוכנה אחרת ועושה זאת לעיתים קרובות בצורה סבירה. אף על פי כן, היא מתרגמת בשגיאות רבות אל ומשפות שאינן שפות אירופיות. על אף שמבחינה טכנולוגית היא מהווה הישג של ממש, הרשת מלאה במקומות שבהם מוצגים התרגומים העילגים שלה באופן הומוריסטי ובלעג.
בניגוד לתוכנות התרגום אשר מבוססות על מסדי נתונים, נמנית גוגל טרנסלייט על התוכנות שמתבססות על לימוד וטעייה. תוכנה כזו לומדת ומתפתחת כל הזמן, על ידי כך שהיא נעזרת במשתמשים המתבקשים, במידה והם מוצאים שגיאות בתרגום, להזין לתוכנה את התיקונים שהם מציעים. כך התוכנה "לומדת" והולכת ומשפרת את כלי התרגום שלה ואת יכולת התרגום העתידי שתעשה.
יש חוקרים שסבורים שתרגום מכונה ללא סיוע אנושי יהיה אפשרי בעתיד והאדם יזכה בעתיד לתרגום מכונה מלא. אחרים סבורים שגם אם יחלפו עוד שנים רבות עד שהמחקר בתחום הזה יבשיל, לעולם לא יתקבל תרגום מכונה שהוא מושלם.
במדעי המחשב נקרא הענף שעוסק בין השאר בתרגום מכונה "עיבוד שפה טבעית", או בלועזית "Natural Language Processing", בקיצור NLP.
הנה תרגום סימולטני, בזמן אמת, של שיחות בתוכנת סקייפ:
https://youtu.be/LKB3FdgjexU
כך מתרגמות תוכנות תרגום בזמן אמת, על המקום:
https://youtu.be/X4BmV2t83SM
כך פועלת תוכנת תרגום של גוגל:
https://youtu.be/_GdSC1Z1Kzs
כך משתמש שחקן כדורגל כדי לתקשר עם המאמן שלו בעזרת תוכנת תרגום סלולארית:
https://youtu.be/oaVQxtzSkp4
לפעמים התרגום של המכונה נשמע מוזר, כמו כאן (מתורגם):
https://youtu.be/Qro3ObmS_0g
וסרטון תיעודי קצר על ההתפתחות של גוגל טרנסלייט:
https://youtu.be/OPTKlycwIkM?long=yes
מהם ומה עושים הפרמטרים במודלי AI?
פרמטרים בלמידת מכונה (Machine Learning parameters), אם רוצים להבין מהם, אז כדאי לחשוב עליהם בתור המשתנים שקובעים את איכות ה"חשיבה" של מודל AI.
תפקידי הפרמטרים במודל שפה הם להבין הקשרים מורכבים בשפה, לחזות את המילה הבאה ברצף הטקסט שמפיק המודל ובסופו של דבר להצליח לייצר טקסט קוהרנטי (הגיוני) ומשמעותי.
אגב, במקום במילים זכרו שהטקסטים נבנים באמצעות טוקנים - ראו בתגית "טוקנים".
אבל עכשיו, אחרי שהסברנו בפשטות, הבה נפרט יותר ונרד לאיך זה נעשה: פרמטרים הם שלוכדים את הקשרים הסטטיסטיים שבין מילים ומושגי שפה שנמצאו בנתוני האימון. אפשר לדמות אותם למעין "כפתורים" בתוך המודל, שניתן לכוונם בכדי לשפר את יכולת המודל לעבד ולייצר שפה אנושית ומרשימה כל כך.
דמיינו שהידע על השפה מזוקק לתוך הפרמטרים ואז, בדומה למערכת סאונד שבה טכנאי הקול מכוונן את הכפתורים כדי להשיג את איכות הצליל הטובה ביותר, מהנדסי ה-AI מכוונים את מיליארדי הפרמטרים כדי להגיע לאיכות הגבוהה ביותר של התוצרים שהמודל ייצר.
בעצם, פרמטרים במודלים של בינה מלאכותית הם בקרי הגדרות פנימיות במודל שניתן לכוון במהלך האימון ועל ידי כך לשפר את יכולתו לעבד ולייצר שפה, תשובות ותגובות טובים יותר.
כלומר, ככל שיש במודל שפה יותר פרמטרים, גדלה גם חוכמתו ויכולתו לעשות שימוש במגוון המידע שנאגר בו. באמצעות הפרמטרים שולטים המהנדסים ברמה בה מודל AI מבין ויוצר שפה.
במהלך האימון, ערכי הפרמטרים מכוונים ומתעדכנים כדי לקודד דפוסים ממערכי הנתונים העצומים עליהם מאומנים המודלים הללו. הפרמטרים לוכדים את הקשרים הסטטיסטיים בין מילים ומושגי שפה שנמצאו בנתוני האימון. עבודה טובה איתם מאפשרת חשיבה טובה ומורכבת יותר ושימוש יותר מוצלח בידע שהמודל צבר, מה שיאפשר תגובות ותוצרים מדויקים יותר.
אגב, מספר הפרמטרים משקף בדרך כלל את גודל המודל. מודלים גדולים יותר יכולים להבין או לתפוס מורכבויות רבות יותר של שפה. מצד שני, הם גם יקרים יותר להפעלה, דורשים כוח מחשוב רב יותר ויש להם השפעה סביבתית רבה יותר, שהיא המחיר שאנו משלמים על כל ה-AI הזה.
אבל חשוב להבין שמספר הפרמטרים אינו המדד היחידי ליעילות המודל. לא פחות חשובה היא איכות הנתונים שעליהם אומן המודל. מודל קטן יותר שאומן על נתונים איכותיים יותר עשוי לבצע את המשימות טוב יותר ממודל גדול יותר שאומן על נתונים פחות מוצלחים.
כלומר, חיבור של כמות הפרמטרים, לצד איכות האימון, רמת הדאטה שעליו אומן המודל והיעילות הכוללת שלו הם המפתח ליכולות של מודל שפה.
הנה הפרמטרים במודל AI ואיך הם משתלבים בתמונה הכללית:
https://youtu.be/mnqXgojQCJI
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
והפרמטרים כחלק מהבינה היוצרת בכללה:
https://youtu.be/r17HV0TzAWw?long=yes
פרמטרים בלמידת מכונה (Machine Learning parameters), אם רוצים להבין מהם, אז כדאי לחשוב עליהם בתור המשתנים שקובעים את איכות ה"חשיבה" של מודל AI.
תפקידי הפרמטרים במודל שפה הם להבין הקשרים מורכבים בשפה, לחזות את המילה הבאה ברצף הטקסט שמפיק המודל ובסופו של דבר להצליח לייצר טקסט קוהרנטי (הגיוני) ומשמעותי.
אגב, במקום במילים זכרו שהטקסטים נבנים באמצעות טוקנים - ראו בתגית "טוקנים".
אבל עכשיו, אחרי שהסברנו בפשטות, הבה נפרט יותר ונרד לאיך זה נעשה: פרמטרים הם שלוכדים את הקשרים הסטטיסטיים שבין מילים ומושגי שפה שנמצאו בנתוני האימון. אפשר לדמות אותם למעין "כפתורים" בתוך המודל, שניתן לכוונם בכדי לשפר את יכולת המודל לעבד ולייצר שפה אנושית ומרשימה כל כך.
דמיינו שהידע על השפה מזוקק לתוך הפרמטרים ואז, בדומה למערכת סאונד שבה טכנאי הקול מכוונן את הכפתורים כדי להשיג את איכות הצליל הטובה ביותר, מהנדסי ה-AI מכוונים את מיליארדי הפרמטרים כדי להגיע לאיכות הגבוהה ביותר של התוצרים שהמודל ייצר.
בעצם, פרמטרים במודלים של בינה מלאכותית הם בקרי הגדרות פנימיות במודל שניתן לכוון במהלך האימון ועל ידי כך לשפר את יכולתו לעבד ולייצר שפה, תשובות ותגובות טובים יותר.
כלומר, ככל שיש במודל שפה יותר פרמטרים, גדלה גם חוכמתו ויכולתו לעשות שימוש במגוון המידע שנאגר בו. באמצעות הפרמטרים שולטים המהנדסים ברמה בה מודל AI מבין ויוצר שפה.
במהלך האימון, ערכי הפרמטרים מכוונים ומתעדכנים כדי לקודד דפוסים ממערכי הנתונים העצומים עליהם מאומנים המודלים הללו. הפרמטרים לוכדים את הקשרים הסטטיסטיים בין מילים ומושגי שפה שנמצאו בנתוני האימון. עבודה טובה איתם מאפשרת חשיבה טובה ומורכבת יותר ושימוש יותר מוצלח בידע שהמודל צבר, מה שיאפשר תגובות ותוצרים מדויקים יותר.
אגב, מספר הפרמטרים משקף בדרך כלל את גודל המודל. מודלים גדולים יותר יכולים להבין או לתפוס מורכבויות רבות יותר של שפה. מצד שני, הם גם יקרים יותר להפעלה, דורשים כוח מחשוב רב יותר ויש להם השפעה סביבתית רבה יותר, שהיא המחיר שאנו משלמים על כל ה-AI הזה.
אבל חשוב להבין שמספר הפרמטרים אינו המדד היחידי ליעילות המודל. לא פחות חשובה היא איכות הנתונים שעליהם אומן המודל. מודל קטן יותר שאומן על נתונים איכותיים יותר עשוי לבצע את המשימות טוב יותר ממודל גדול יותר שאומן על נתונים פחות מוצלחים.
כלומר, חיבור של כמות הפרמטרים, לצד איכות האימון, רמת הדאטה שעליו אומן המודל והיעילות הכוללת שלו הם המפתח ליכולות של מודל שפה.
הנה הפרמטרים במודל AI ואיך הם משתלבים בתמונה הכללית:
https://youtu.be/mnqXgojQCJI
פרמטרים וטוקנים הם לא הכל במודלים:
https://youtu.be/a1nqXQMOCks
והפרמטרים כחלק מהבינה היוצרת בכללה:
https://youtu.be/r17HV0TzAWw?long=yes
